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AN ITERATIVE TRANSFORMATION PROCEDURE FOR NUMERICAL SOLUTION OF FLUTTER
AND SIMILAR CHARACTERISTIC-VALUE PROBLEMS !

By Myronx L. Gossarp

SUMDMARY

An dterative trangformation procedure suggested by H.
Wielandt for numerical solution of flutter and similar charac-
teristic-ralue problems is presented. Application of this pro-
cedure to ordinary natural-vibrativn problems and fo flutter
problems is shown by numerical examples. Comparisons of
computed results with erperimental values and with results
obtained by other methods of analysis are made.

INTRODUCTION

Existing methods of flutter analysis include the
representative-section method, generalized-coordinate meth-
uds, matrix methods, and operational methods. The present
report presents an iteration procedure for analysis of
flutter and similar characteristic-value problems.

For ordinary natural-vibration problems, iterative pro-
redures of the Stodola type (references 1 and 2) are suitable
for finding the fundamental and higher-order natural modes
and frequencies. The higher-order solutions are obtained
through use of the orthogonality relations that exist among
the natural modes.

Orthogonality relations analogous to those that exist in
vrdinary vibration problems ean be found in the flutter
problem only by introduction of the so-called “adjoint”
problem. (This additional step is unnecessary in ordinary
vibration problems by virtue of the fact that they are
“self-adjoint.””) Wielandt has suggested an iterative trans-
formation procedure (reference 3) which is well-suited to
the flutter problem in that it avoids the need of orthogo-
nality relations and hence does not require consideration of
the adjoint problem. The iterative transformation pro-
cedure can also be applied to ordinary natural-vibration
problems with less labor than is generally required in the
extended Stodola procedure.

Because both the original and translated works of
Wielandt are difficult to follow, an explanation of the idea
of the iterative transformation procedure is given in the
present report and the sapplication of the procedure to
ordinary natural-vibration problems and to flexure-torsion
flutter problems is shown in numerical examples. Com-
parisons of computed results with experimental values and
with results obtained by other methods of analysis are
also made.
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SYMBOLS

flexural stiffness

torsional stiffness

spanwise coordinate with origin at root of wing

complex representation of amplitudes and phases
of translation of elastic axis in harmonic motion

complex representation of amplitudes and phases
of rotation about elastic axis in harmonie motion

coupled mode (y,¢)

complex coefficients of y which, when multiplied
by y, give complex representation of amplitudes
and phases of serodynamic and inertia forces
associated with translational component of
harmonic motion

complex coefficients of ¢ which, when multiplied
by ¢, give complex representation of amplitudes
and phases of aerodynamic and inertia forces
associated with rotational component of har-
monic motion

complex coefficients of ¥ which, when multiplied
by ¥, give complex representation of amplitudes
and phases of aerodynamic and inertia torques
associated with translational component of har-
monic motion

complex coefficients of ¢ which, when multiplied
by ¢, give complex representation of amplitudes
and phases of aerodynamic and inertia torques
associated with rotational component of har-
monic motion

structural-damping coefficients associated with
flexure and torsion, respectively (see appendix B)

coefficient of artificial damping (may be either
positive or negative)

reduced frequency (bw/v)

frequency of harmonic motion

characteristic value (li;%i')

length of semichord of wing

length of cantilever wing from root to tip

mass ratio (v/xpd®) )
velocity of air relative to wing

distributed mass of wing per unit length of span
mass dengity of air

! Supersedes NACA TN 2346, “*An Itcrative Transformation Procedure for Numerieal Solutioa of Flutter and Similar Characteristic-Value Problems™ by Myron L. Qossard, 1951,
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a distance between midchord axis and elastic axis
in terms of local semichord, positive when
clastic axis is behind midchord axis

o distance between elasticaxisand gravity axis of dis-
tributed mass of wing in terms of local semichord,
positive when gravity axis is behind elastic axis

r radius of gyration of distributed mass of wing
about elastic axis in terms of local semichord

G transcendental functious of k (see reference 4)
time

F,
t

. Cn
Fon eigenvalue factor Cr—l
R ratio of complex constants
A

length; in numerical solutions, distance between
specific adjacent stations of wing

P applied force

q applied torque

15 shear

M bending moment

[ curvature

B slope of elastic axis

T twisting moment

6 angle of twist

Subscripts:

1,2,3, ... true modes or cigenvalues
a2.a3,04, . . . transformed modes

b intermediate derived mode
ABC, ... stations '

R real

I imaginary

0 reference value

b1,ba2,ba3, . . .
Superscripts:
(1),(2),8), . .. cycles of iteration

A bar over a symbol indicates a concentrated quantity
instead of a distributed quantity.

A prime is used to denote division by «2

sweeping functions

ITERATIVE TRANSFORMATION METHOD OF SOLUTION
GENERAL FEATURES OF METHOD

The principle of the iterative transformation procedure is
similar in form to that of the standard iteration procedure
for solving characteristic-value problems. Both procedures
require the determination of the solutions in the order of the
magnitudes of the eigenvalues, beginning with the funda-
mental. Both procedures require assumptions of modes,
integrations which generally must be done numerically, and
sweeping operations for higher-order-mode determinations.
The distinguishing features of the iferative transformation
procedure occur in the determination of solutions higher than
the fundamental and are as follows: (1) The immediate aim
is to determine not the true nth mode, as in the standard
iteration procedure, but a particular linear combination
composed of all modes from the fundamental to the nth.
This linear combination is referred to as the transformed nth
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mode. The transformed nth mode can be made to have
nodal (zero) points at specified stations of the wing; such a
feature is highly desirable in numerical work. (2) The
sweeping operations, which consist of subtractions of lower-
order-mode shapes from the function obtained by integrating
the assumed mode, do not employ the orthogonality relations
as in the standard iteration method but make use of forecing
functions that, in numerical work, greatly simplify the
sweeping operations and increase the over-all accuracy of the
results by making the sweeping operations more consistent
with the rest of the process. (3) Although the true nth
eigenvalue is determined directly in the iterative transforma-
tion procedure, the true nth mode must be computed from
quantities within the iteration cycle after the transformed
nth mode is found.

OUTLINE OF STEPS IN THE PROCEDURE

The equation of equilibrium of & cantilever beam vibrating
harmonically in pure flexure is

2 2,
g ) G R (1)

or, after integration witlhh proper attention to boundary

conditions,
T T L L 2 (d ) 9
v=[ [Tz [ [ revan )

The solutions of this integral equation are the true natural
modes (eigenfunctions) ¥y, 72, ¥s, . - . and the corresponding
natural frequencies (eigenvalues) w;, w3 ws .. .. For
convenience in subsequent discussion, the true modes are
assumed to be normalized to unity at some position (station
A) along the beam. _

The first mode and frequency are assumed to have been
previously determined by the Stodola process. The iterative
transformation procedure Lecomes applicable in the deter-
mination of the second mode and frequency. As mentioned
previously, the immediate aim in the iteratiou for the second
mode Is the determination of a linear combination of first
and second modes which is called the transformed second
mode. The linear combination #—y which has zero
ordinate at stution A is chosen and defined as the transformed
second mode to be determined. The iteration for determina-
tion of this transformed second mode may be described as
follows:

(1) A plausibleshape ™ for the transformed seeond rhode
is assumed. This shape must have zero ordinate at station
A and should satisfy the boundary conditions as closely as
possible.

(2) The displacement

) T e L L ) “)d .
ya=ﬁﬁE‘I£ J; YenYar P (d2)

resulting from the inertia load yw’y" corresponding to the
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assumed shape ¥ vibrating harmonically at frequency e,
is calculated. This calculation must usually be done
numerically with the square of the frequency w;® being
carried along as an undetermined factor.

(3) A first-mode shape (previously determined) is sub-
tracted (swept out) from the calculated displacement y, in
an amount such that the resulting displacement is zero at
station A. Thus the resulting displacement is

B =1fy— ) Y

(4) The resulting displacement y,.® is compared with the
assumed displacement ¥,”. When the computations are
numerical, the ratios 7, /y." are compared at all the sta-
tions. If the assumed displacement is exactly equal to the
transformed second mode, the ratios are equal to each other.
These ratios contain the single unknown w,, and the second
frequency is that value of ws which makes the ratios unity.

(5) If the ratios y,»®/y»" from the first cycle of iteration
outlined in the four preceding steps are not reassonably the
same at all stations, the process must be repeated until the
ratios become reasonably the same. Esach new cycle starts
with the resultant displacement of each preceding cycle.
The convergence of this process to the second frequency and
the transformed second mode is proved in appendix A.

The transformed third mode and the third frequency are
computed in the following manner. The transformed third
mode is defined as that combination of the first three natural
modes which has & zero ordinate at the same station that was
used in the transformed second mode (station A) and also &
zero ordinate at some other station, station B. Thus the
transformed third mode is defined as

.’h_yl_(ga—:g‘:)s(yz—yl)

The iteration is as follows:

(1) A plausible shape ¥, for the transformed third mode
is assumed. This shape must have zero ordinates at sta-
tions A and B and should satisfy the boundary conditions as
closely as possible.

(2) The displacement

LA | L L "
.’ln=[; [; EI L [; Yws*Yas M (dx)*

is calculated with the square of the frequency w;? carried
along as an undetermined factor.

(3) The first of two sweeping operations, in which a first-
mode shape is swept from the displacement ¥, so as to make
the resulting displacement at station A zero, is performed.
This operation gives the displacement

¥
()
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(4) The second sweeping operation, in which a transformed-
second-mode shape (previously determined) is swept from
the resulting displacement of step (3) so that the new
resulting displacement is zero at station B as well as at
station A, is performed. (This second swecping operation
cannot disturb the zero condition at station A established in
step (3) because the second sweeping function (the trans-
formed second mode) is identically zero at station A.) Thus,
the final resulting displacement is

R P a1

(5) Comparisons of the ratios y.s'®/ya at all stations are
made, and, if they are not reasonably the same, additional
eycles of iteration are carried out until the ratios become
reasonably the same. The third frequency is then computed
from the ratios as explained previously. Convergence of
this process to the third frequency and the transformed third
mode is proved in appendix A.

Frequencies and transformed modes higher than the third
may be computed by extensions of the process just described.

PHYSICAL INTERPRETATION OF THE PROCEDURE

A physical interpretation of the iterative transformation
procedure can be given. With regard to the transformed
second mode, for example, the following question may be
asked: Under what conditions can the beam vibrate in the
transformed-second-mode shape at the second natural
frequency? Vibration in shape ye=%—1 &t frequency w;
implies &n inertia loading yw2(ya—y1). But if this load is
substituted in place of yw,*y in the right-hand side of equation
(2), the result after integration will not be y,—y; but -

¥ =[:J:E1—f£ LJ;wa(yz—yx)(dr)‘ (3)

However, if an external (forcing) load of an amount
y(w?—ewDy, is added to the inertia load, the totsl load
v {wp?ys—w;?y;) will produce the shape y,—y;. Thus

LIL:E_I'LLLLﬂwz"yz—an”yx)(dr)‘=yz—yl @

The inertia and forcing loads are illustrated in figure 1.
The inertia load ecting alone produces a displacement
(equation (3)) generally different from zero at station A.
The forcing load produces the displacement

(25-1) u= f f 71). f vot—edpda)t  (5)

This displacement (equal to the sweeping function) has the
shape of the previously determined first mode and is equal
and opposite at station A to the displacement due to the
inertia load; that is, by virtue of the previously assigned
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normalizations at station A,

¢ iyl 2
e () ®
Thus the displacement due to the forcing load is completely
determined when the displacement due to the inertia load is
known. The gist of the foregoing analysis is that vibration
in the transformed-second-mode shape is the response of the
beam to an oscillatory forcing load of the first-mode shape
and of frequency equal to the second natural frequency,
superimposed on a free vibration of the beam in the second
natural mode.
Similar physical interpretations of the iterative transforma-
tion process for modes higher than the second can be made.

APPLICATION OF THE PROCEDURE IN ORDINARY COUPLED
NATURAL-VIBRATION PROBLEMS

The procedure that has been outlined in a preceding scction
for pure flexure can easily be extended to systems capable of
simultaneous flexural and torsional displacements. Airplane
wings belong to the latter class of systems., The only
distinguishing element in coupled flexural-torsional vibration
problems is that each natural mode contains two components,
the flexure and the torsion. These components must always
appear together in a fixed relation to each other. The two
components must be computed together and must be used
together.

f——
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(a) Transformed second mode: ¥at=fs—y1.
(b} Inertia load: yu(ya—yt).
(¢} Forclng load: y(wit—wd)pi.

Fieurz 1.—Illustration of physical basis of iterative transformation procedure,

Each coupled mode is a solution of the simultancous
differential equations

2 2,
L BT Ty aty+ bug) @
d
— 6T Pyt by + b9 ®

Equations (7) and (8), after integration, become (for a
cantilever beam)

o= g [ [ rbuaaa @

r L
o ﬁ a_lJf yul(buy-+birig)(da)t (10)

The solution of the integral equations (9) and (10) for the
coupled transformed second mode by the iterative trans-
formation procedure is outlined diagrammatically in figure 2.
The flexural component of the displacement for a particular
step 1s illustrated in the left-hand side of the figure and the
torsional component is illustrated at the same level in the
right-hand side.

I /_\ . | _
“ L ods—————

|

),

— 7

(5/;&”’1

@ - J

¥ — f_

(a) Assumed transformed second mode,
(b) Intermediate derived mode.

{¢) First-mode sweaping function.

{d) Derived transformed second mode,

Fiours 2.—Tllastration of steps in the Iterative transformation procedure for determining
coupled modes.
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In the (irst step, an approximation to a linear combination
of the true first and second coupled modes is assumed. The
particular linear combination having zero flexural displace-
ment at the tip station (station A) is chosen. (For greatest
numerical aceuracy, this nodel point should be chosen in the
component and at the station where the first coupled mode
has its maximum numerical value.) The symbols y,." and
$u:? are used to designate the flexural and torsional com-
ponents of this assumed displacement, respectively. In
gencral, the magnitude of the torsional component relative to
the flexural component is difficult to estimate; the most expe-
dient thing to do is to take one of the components equal to zero.

The second step is the computation (by numerical inte-
gration} of the two components of the displacement due
to the inertia forces ~yw,*(You+bude) and inertia torques
v (BuYet B3¢y, that are associated with the assumed
displacement. The result is termed the intermediate derived
mode, and the symbols 3, and ¢, are used to designate
its two components.

The third step is the determination of a sweeping function
having the shape of the first coupled mode (previously de-
termined) and a magnitude such that the sum of the inter-
mediate derived mode and the sweeping function equals zero
in the flexural component at station A. In algebraic terms,
the first-mode sweeping function is given by

W
Us (u__ yb )y (11)

(L
u=—(L-) (12)

The fourth step is the addition of the intermediste derived
mode and the first-mode sweeping function to give the derived
transformed second mode. Thus the two components of the
derived transformed second mode are

1)
yaz(m:yb(l) _(y;h )Ayl (13)
¢a:® =P — ‘U: (14)

The calculation of the ratios #,»™®/ys® and ¢u®/¢." at
all stations completes the first cyecle of iteration.

Additional cycles are carried out until the ratios at all
stations in both the flexural and torsional components have
values that are reasonably the same. The true second natural
frequency of the coupled system is then obtained as described
previously.

Steady vibration of an airplane wing at zero airspeed is an
example of coupled natural vibration. The actual numerical
calculations for the transformed second mode as well as for

the first mode and transformed third mode of an airplane
wing vibrating at zero airspeed are discussed subsequently as
a special case of flutter.

The more general equations of airplane flutter at nonzero
airspeed may be inferpreted in such a way that they can
be solved by a process analogous to that just deseribed for
coupled natural vibration.

APPLICATION OF THE ITERATIVE TRANSFORMATION
METHOD TO FLUTTER

FLUTTER EQUATIONS

The differential equations of equilibrium for a wing execut-
ing simple harmonic motion are

2 2
& EI+ig) T=Py+Pue (15)
d . . d
— 15 6 (1+ig) =0y +Qus (16
These equations govern & motion represented by
Y(z,H)y=y(x)el (17)
Bz, )=g(r)e** (18)

The use of the structural-damping coefficients g, and g4 in
equations (15) and (16) is discussed in appendix B. The ex-
pressions P,y+Ps¢ and Q-+ (Qu¢ are the intensities of
applied force and torque, respectively. For aerodynamic
and inertia forces and torques due to air fiow and distributed
mass, the P and @ coefficients have values given by the follow-
ing formulas (rearranged from those in reference 4):

For P,

P,E PR'—‘T:P[' (19)
in which
2
P () @y o
and
(0N 2F [y
Pe=(3.) & () D
For P,
P,EPB‘—I'ij (22)
in which

R Q[ E e oy
R Il ST I

and
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For @,
Q= Qm—iln (25)
in which

=B [-(he) Foetm] @) a0

and
D -GFIDe o
And for @,
Qo= Qrs—1Qr¢ (28)
in which
B T
(29)
and )

w=()1Go)e-Gro) () z O

For inertia forces and torques due to concentrated mass, the
intensities of force and torque are, respectively,

va+P¢¢=£3-@ (81)
and
Qu+Qus=lim GGt (32
in which
R e
OIS G
and

A oo

For a cantilever wing the boundary conditions on the
displacements are

@emi=@em=(3L),_~| B0 +in) 4]
[ f£Era+ingy] [GJ<1+e.g¢)dz] =0 (36)

The differential equations (15) a.nd (16) are now written
with the eigenvealue «* as an explicit factor. Thus equations

(15) and (16) become
L EIG+in) Sh=aB/y+Pie) @D
and
“ —L G0 +ig) LL=Qy+Q/ (38
az ¥Je dz_ y Y ) }
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in which the P’ and @’ coefficients are equal, respectively, to
the P and @ coefficients divided by «?.

FORMULATION OF PSEUDOFLUTTER PROBLEM

Those solutions «? (y,¢) of equations (87) and (38) for
which «® is & reel and positive (not complex) quentity
represent the steady harmonic motions of true futter.
However, because the P and @ coefficients are in general
complex and because of the presence of structural damping,
the solutions of equations (37) and (38) will, in general,
be complex and will include complex eigenvalues w?®. As
in other methods of futter analysis, the problem is made
tractable by assuming at the beginning a value of the param-

eter k=§—:- This assumption fixes the values of the P and §

coefficients. A real value of k is assumed because » must
be real and only real values of w can represent flutter. To
avoid the inconsistence of assumed real values of £ and
obtained complex values of «? in the solutions, the problem
itself is altered by introducing an artificial demping so that

the complex eigenvalue is given by » where g, 1s the

o?
14-ig.
coefficient of artificial damping. Thus the differential
equations of what may be termed the pseudeflutter problem

become

d? . .d® 2 ,

T EIOig) Ti=y 7 B/y+P/e)  (39)
d . .d ol , ,

—Zz Wi =T QT 40)

The value of «? can now be real for any assumed real value
of k and is therefore the square of the frequency of the steady
harmonic motion maintained by the artificial-demping
forces and the naturelly present serodynamic, inertia,
structural, and structural-demping forces. True flutter
is possible for those special cases in which g, is zero.

Equations (39} and (40) are similar in form to equations
(7) and (8) and can be solved by the iterative transformation
procedure in & way completely analogous to the solution
of the ordinery problem. The complications introduced
by the presence of air forces require, however, that a set of
solutions be obtained for each of several assumed values of %.
The fact that most of the functions involved are complex
virtually quadruples the labor as compared with that
required in the ordinery coupled natural-vibration problem.

STEPS IN THE ITERATION AS APPLIED TO FLUTTER

The iteration procedure employs the basic differential
equations (39) and (40) in their integral forms which, for the
cantilever wing under consideration, are

v=5f, | erarm . | @vrriowsr @

- . “o/ / JRY
¢=5L GJ(0+igy) L (Q'y+Qy'9)(d2) (42)

in which C stands for the more convenient form %‘ of the

eigenvalue. The iteration of equations (41) and (42)
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follows the same form as the iteration of equations (9) and
(10). Briefly, the steps are as follows:

(1) A real value of k 1s assumed and the values of the
complex P and @ coefficients are computed.

{2} An essumption is made for the desired mode y,¢.
(In the first cycle of iteration the assumed mode may be
reel but in the following cycles it will be complex.)

(3) The complex loadings P,y+P,¢ and Q-+ Q.¢ are
computed.

(4) The integrations indicated in the equations are
carried out numerically to get the complex intermediate
derived mode.

(3} The sweeping operations are performed by using the
complex lower-order transformed modes previously deter-
mined. For convenience in numerical calculations, the
flexural and torsional components of the complex derived
iswept) transformed mode are computed in the forms

1y LY
a Ho EoIo boK' (43)
and
1 ‘Yo L EQID bo
C o Eoly God L7 B (44)

respectively, in which K, and K, are nondimensional com-
plex functions of the spanwise coordinate z.

(6) The derived and assumed modes are compared by
computing their ratios at the stations of the wing. If these
ratios are not reasonably the same, additional cycles of
iteration are carried out until the ratios are reasonably
the same. In the limit (never obtained in practice) the
ratios will be identical and the proper value of €'is that value
which makes themn unity; that is,

1 '}'o L* b > _1 b_.L_ EQI(] bo K
0 Bo Eofo O Hq Equ GoJu L’ ¢ 1
v ) = (45)

in which ¥ and ¢ constitute the assumed mode of the limiting
cycle and the functions in the numerators constitute the
derived mode of the limiting cycle.

Equation (45) may be stated in the form

—Ol-(D+zH) Yo -i—1 (46)

in which D and H are nondimensional real numbers. Inas-

much as C'is defined as +=g,

, equation (46) may be written

e LP 14ig,
(D+iH) X PR oY A

(24

(47)

from which the frequency and artificial-damping coefficient
are obtained as follows:

(48)

(49)

309

The relative air velocity corresponding to the assumed vsalue
of k is given through the definition of &, that is -

v =%§ (50)

NUMERICAL EXAMPLES

Numerical computations presented in this section illustrate
the actual application of the iterative transformation pro-
cedure first to the ordinary natural-vibration problem
(vibration at zero airspeed) and then to the flutter problem.
All examples deal with the cantilever wing shown in figure 3.

The geometric, structural, and mass properties of the
wing are given in figure 3. A station coordinate system is
employed for the purposes of the required numerical inte-
grations. Four stations along the span have been selected
as indicated in the figure; one of these stations is located at
the spanwise position of the concentrated mass. The dis-
tributions of forces and displacements over the span are
considered to be adequately defined (through interpolation)
by the forces and displacements at the four selected stations.
The selection of a system of stations in any problem is im-
portant because it greatly influences the amount and accu-
racy of the work to follow. In problems, such as the present
one, that involve concentrated masses, a station must be
placed at each concentrated mass because displacements at
the concentrated masses must be known. (More generally,
a station must be placed at each discontinuity. Discontinu-
ities may be present in the distribution of the structural
stiffness and in the plan form as well as in distribution of
mass.) The other stations should be equally spaced between
the discontinuities, and for the system of parabolic inter-
polation used in the numerical integrations in this report
there must be a minimum of one station between each
adjacent pair of discontinuities. The total number of
stations should be the smallest possible that is consistent
with the desired accuracy because the calculation effort
increases rapidly with an increasing number of stations. In
coupled systems, the number of degrees of freedom allowed
is twice the number of stations selected; that is the number
of degrees of freedom in either the flexural or torsional

o

Lhstic oxia
s G"avr‘fy axs

a09839 stag. Q0270 slugffi., ', ! Midchord axis
~ \‘\ 1 \\ r’ ,, l’
vife
! 0396
I o .8/8b N i; i 1 4
} - = g el
6-0.31;3 7+ 126b
L 7
A + g Ag=L292 £t
A= Q5483
f L=4 Ff
Eln
o 0.002378 slug/ft? Sy 123000 (radlansfsec)?
a=32.6
EI=977.1 1412 ( ), EI_
GJ=180.6 [b-ft2 e

F16URE 3.—Properties of cantilever wing used In numerfcal examples.
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component of displacement is equal to the number of stations
employed. Experience has indicated that with parabolic
approximations results accurate to at least two significant
figures in the highest mode computed can be obtained by
employing numbers of stations as follows: For uncoupled
systems, the number of stations should be two greater than
the order of the highest mode to be computed; for coupled
systems, the number of stations should be one greater than
the order of the highest mode to be computed, with a mini-
mum of three stations. More than these minimum numbers
of stations may be required if their use is dictated by suffi-
ciently many discontinuities.

ORDINARY COUPLED NATURAL MODES AND FREQUENCIES

The calculations for the first, second, and third modes at
zero airspeed for the wing of figure 3 are shown in tables 1,
2, and 3, respectively. In this case k== and the only
aerodynamic forces are the apparent-mass forces. For
simplicity, structural damping is disregarded; therefore, all
quantities entering the problem are real. The numerical
values of the aerodynamic-inertia force coefficients for
k= =, as well as for other values of £ to be used subsequently,
are given in table 4.

The first coupled mode is computed in table 1. Table 1
shows in separate tabulations the flexural and torsional parts
of the calculation. The first cycle of iteration (part (a) of
the table) is shown in full detail. Two forms for the tor-
sional part of the calculations are shown: The first form
may be used when the torsional stiffness GJ is constant over
each bay or over the whole length of the wing; the second
form, which requires slightly more work, must be used
when GJ is varigble and may be used, as in this case, when
@GJ is constant. The second and third cycles of iteration
are summarized in parts (b) and (c) of table 1.

Details of the first cycle of iteration, if the procedure that
applies only for constant torsional stiffness GJ for the tor-
sional part of the calculation is used, are as follows: In
columns 1 of table 1 (a) the two parts 1 and ¢‘* of the
assumed first mode are listed. The torsional component is
assumed to be zero because it will ultimately be small and is
difficult to estimate. Columns 2 and 3 are the appropriate
products of the assumed mode and the distributed-force
coefficients. Columns 4, which are the sums of columns 2
and 3, give the two components of the external load which
correspond to the assumed mode and thearbitrary frequency.
Columns 5 give the concentrated loads (external forces and
torques) that are equivalent to the distributed loads of
columns 4. These equivalent concentrations are given in
columns 5 in terms of the pertinent distances between sta-
tions A; and in columns 6 in terms of the reference distance
d. Formulas used for computing the equivalent concen-
trations from the distributed loads are given in appendix C.
Columns 7 and 8 are the appropriate products of the assumed
mode and the concentrated-force coefficients. Columns 9
are the total concentrated loads, the sums of columns 6, 7,
and 8.
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The flexural and torsional calculations must now be de-
scribed separately. In column 10 for flexure, the average
shears in the bays between stations are found by a successive
summation of the concentrated loads from the tip where
the shear is zero inboard to the root. In column 11 theincre-
ments of bending moment are computed by multiplying
the shears by the bay lengths in terms of Ns. The bending
moments of column 12 are found by a successive summation
of the increments of bending moment from the tip where the
bending moment is zero inboard to the root. Column 13
gives the distribution of curvature, which is obtained by
dividing each ordinate of the bending-moment curve by the
local value of EI (EI in this example is constant). Equiva-
lent concentrated curvatures are now obtained by applying
to the distributed curvatures the previously used formulas
for equivalent concentrations. Column 14 gives these
equivalent concentrations in terms of the distances X4 and
column 15 gives them in terms of the reference distance k.
The average slopes in the bays are obtained in column 16
by a successive summation of the concentrated curvatures .
from the root where the slope is zero outboard to the tip.
The increments of derived flexural displacement are com-
puted in column 17 by multiplying the average slopes by the
bay lengths in terms of N. The flexural component #%‘? of
the derived mode is obtained in column 18 by & successive
summation of the increments of displacement from the root
where the displacement is zero outboard to the tip. Column
19 gives the ratios at the selected stations of the derived
flexural component to the assumed flexural component.

Columns 10 to 15 for torsion are now considered. Column
10 gives the average twisting moments in the bays of the
wing and is obtained by a successive summation of the
concentrated torques of column 9 from the tip where the
twisting moment is zero inboard to the root. The average
twists in the bays are computed in column 11 by dividing
the average twisting moment in each bay by the local value
of @J (GJ in this example is constant over the whole span).
The increments of derived torsioneal displacement are obtained
in column 12 by multiplying the average twists by the bay
lengths in terms of . The torsional component of the
derived mode is computed in column 13 by a successive
summation of the increments of displacement from the root
where the displacement is zero outboard to the tip. Inas-
much as the derived displacement of column 13 is in terms
of @J, the displacement is converted into terms of EJ in
column 14 so that it may be compared with the assumed
torsional displacement on the same basis as the assumed
and derived flexural displacements are compared and so that
the next cycle may be started with displacement components
having the same dimensions as the assumed mode of this _.
first cycle. Column 15 normally would contain the ratios
at the selected stations of the derived torsional component
to the assumed torsional component, but in the case of table
1 (a) these ratios are meaningless because the torsional
component will ultimately be different than was assumed
in column 1.
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Before the results of further cycles of iteration for the first
mode are described, the form that the numerical integration
for the torsional component must take when G is variable
is described. In the part of table 1 (a) showing the calcula-
tion for variable GJ, columns 1 to 4 are the same as in the
calculation for constant GJ. The form of the numerical
integration changes at column 5. Column 5 consists of
inerements of twisting moment over the bays. These incre-
ments are obtained as increments of area beneath the curve
of distributed torque (column 4). Formulas used for com-
puting these increments are given in appendix C. In column
5 the increments of twisting moment are given in terms
of the distances A, and in column 6 they are given in terms
of the reference distance A, The twisting moments at the
selected stations due to the distributed torsional loading are
ohtzined in column 7 by a successive summation of the inere-
ments of twisting moment. The components of externsl
concentrated torgue are as for constant GJ and are given in
volumns 8 and 9. The applied concentrated torque gives
twisting moments as shown in eolumn 10. Column 11 is
the sum of columns 7 and 10 and gives the total twisting
moments at the selected stations. (Note that in columns 10
and 11 there is a discontinuity in {wisting moment at the
station having the mass discontinuity.) Column 12 gives
the distribution of twist found by dividing column 1! by
the local value of GJ (GJ being in general not constant).
The increments of derived torsional displacement are com-
puted in columns 13 and 14 by applying to the values of
column 12 the same formulas applied previously to column
4. The torsional component of the derived mode (columns
15 and 16) is, except for small computational discrepancies,
the same as in the previous method, as it should be.

Two additional eycles of iteration were found to be ade-
quate for the determination of the first mode and frequency.
The results of these iterations are shown in parts (b) and (¢)
of table 1. In table 1 (b), for example, columns 1 give the
two components of the assumed mode of the second cycle,
which are obtained by normalizing the derived mode of the
first cycle to unity in the flexural component at the tip
station. This normalization is not essential but facilitates
manipulations and comparisons by keeping the numerical
values in all cyeles within the same range of magnitude.
Columns 2 give the derived mode obtained by the numerical
integration procedure just described. The ratios of derived
to assumed mode are given in columns 3 for both components
of displacement. These ratios are seen to be fairly uniform.
The ratios obtained in the third eyele in table 1(c) are, for
practical purposes, identical. The averaging device shown
in columns 4 of table 1 (¢} and below table 1 is adopted
as a guick and generally quite accurate way of smoothing
out small discrepancies that remain in the ratios after
convergence is almost complete. This device, although
clearly not necessary in the case of table 1 (¢), is useful in
other cases throughout the numerical examples and is ex-
plained as follows: The two ratios in columns 4 are obtained
by considering the flexural and torsional components of the

displacement separately and then dividing the sum of the
station values of the derived displacement by the sum of the
station values of the assumed displacement. Yhen a dis-
crepancy remains between two ratios of the type in columns
4, the average of these two is taken as the final value;
the final value for this case is given in the calculation
below table 1. This device gives greater weight to the larger
ordinates and is in that respect similar to other weighting
procedures such as the energy and least-squares methods
but is much simpler. If the assumed and derived displace-
ments contain both positive and negative ordinates, the
negative ordinates should be changed to positive for the
purpose of the summsations. The remaining calculation
shown below table 1 gives that value of the arbitrary fre-
quency « which makes the ratio just computed unity. As
proved in appendix A, this value of w is the fundamental
frequency w;.

Table 2 gives the main results of three cycles of iteration
required to obtain satisfactory approximations of the second
frequency and the transformed second mode at zero airspeed
(k= «). Columns 1 of the first cycle (parts (a) of table 2)
contain the two components ¥, and ¢V of the assumed
transformed second mode. This mode must have one zero
ordinate (excluding the root ordinates). Although this
zero ordinate may theoretically be taken at any station, the
numerical accuracy of the results is greatest if the zero ordi-
nate is placed at the station and in the component where the
preceding mode (the firat) has its maximum numerical value
(since the numerical process is such that the larger ordinates
contain more significant figures than the smaller ordinates).
Therefore, the zero ordinate of the transformed second mode
is placed at the tip station in the flexural component, this
location being designated station A. In the numerical
values of columns 1, the flexural component ¥, would
normally be taken as zero. (The values that are shown are
estimated from flutter calculations that had previously been
made for this wing.) Columns 2 give the intermediate
derived mode obtained by numerical integration. Columns
3 constitute the first-mode sweeping function. The shape
of this sweeping function is given by columns 2 of table 1 (¢}
and its magnitude is such as to be equal and opposite to the
intermediate derived mode at station A. Thus the derived
transformed second mode (columns 4), which is the sum of
columns 2 and 3, has zero ordinate in the flexural component
at station A and a shape comparable to the assumed mode, ss
indicated by the ratios in columns 5. The ratios in the next
two eycles (parts (b) and (c) of table 2) show marked im-
provement in uniformity. The final value of the ratio com-
puted below the table gives, as proved in appendix A, the
value of the second frequency w,, as shown.

The main results of the iterations to obtain satisfactory
approximations of the third frequency and the transformed
third mode at zero airspeed are stated in table 3. Typical
operations required in 2 cycle are outlined in table 3 (a).
Columns 1 give the assumed transformed third mode made
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up of the two components yu'® and ¢,”. The transformed
third mode is to have & zero ordinate in the flexural compo-
nent at the tip station as in the transformed second mode and

a zero ordinate in the torsionel component at the tip station.

The location of the second zero ordinate is designated station
B. To obtain greatest numerical accuracy, the selection of
the second zero ordinate is governed by the same rule that
was used for selecting the first zero ordinate, namely, that
the new zero ordinate should be placed at the station and
in the component where the preceding mode (the transformed
second) has its maximum numerical value. The numerical
values thet are shown in columns 1 are estimated from pre-
vious flutter calculations; the torsional component ¢g™
would normally be taken as zero. Columns 2 give the inter-
mediate derived mode, and columns 3 give the first-mode
sweeping function which, as before, hes a magnitude at sta-
tion A thet is equal end opposite to the intermediate derived
mode. Columns 4 constitute the transformed-second-mode
sweeping function which bas a shape given by columns 4 of
table 2 (¢) and & magnitude at station B equal and opposite
to the sum of the intermediate derived mode and the first~
mode sweeping function (the sum of columns 2 and 3). The
derived transformed third mode of the first cycle is the sum
of columns 2, 3, and 4 and is given in columns 5. The ratios
in columns 6 are far from uniform. The ratios in the second
and third cyoles (parts (b) and (c) of table 3) show improve-
ments in uniformity. The iteration js discontinued at the
end of the third cycle where the ratios are about as uniform
a3 they can get with the limited number of significant figures
that are present. The frequency obtained by the smoothing
device is the third frequency w, end has the value shown.

The patterns leid out in the foregoing examples establish
the general technique that can be used to obtain zero-
airspeed modes and frequencies higher than the third.
Guiding rules for determining the number of selected stations
to be employed have been given previously. These examples
also set the basic patiern for the computation of the modes
and eigenvalues of pseudoflutter and of flutter.

MODES AND EIGENYALUES OF PSEUDOFLUTTER AND OF FLUTTER

The operational solution in reference 5 gave for the wing
under consideration (fig. 3) a reduced_frequency at flutter
of 0.1443. In order to use this operational solution, this
same value (k=0.1443) is used in the flutter calculations
that follow.

The calculations for the first, second, and third modes at
k=0.1443 are shown in tables 5, 6, and 7, respectively.
Aerodynamic-inertia force coefficients have been computed
by equations (19) to (35) and their. values. are. given in
table 4 Structural damping is disregarded, elthough a note
on the method of incorporating structural damping in the
calculations is made subsequently.

REPORT 1073—NATIONAL ADVIBORY COMMITTEE FOR AERONAUTICS

Table 5 (a) shows in detail the first cycle of iteration for
the first mode. The form of the computations is the same
as that shown previously for the determination of zero-
airspeced modes. The amount of computation, however, is
between three and four times that required for zero-airspeed
modes because of the fact that the functions involved are
complex and thus must be described by two parts—a
real part and an imaginary part. Columns 1 and 2 are the
real and imaginary parts, respectively, of the assumed first
mode. As a start, all parts of the assumed mode except the
real part of the flexural component are taken as zero. Col-
umns 3 to 6 are the real parts of the products of aerodynamic-
inertia coefficients and the assumed mode, and thus their
sums (columns 7} are the real parta of the distributed load.
If the expressions for the distributed load are conmsidered,
this condition is more evident. The distributed forces pro-~
ducing flexure are given by

(Pry—1Pr)(yet+1iy)+(Pre—iP1)(drt+ ¢ =Pryn+
PredrtPryr+Predr+t(Priyr+ Pretr—Priyn—Predr)
: (61)

The termos of the real part of equation (51) appear in columns
3 to 6 in the flexural part of table 5 (a); the terms of the
imaginary part of equation (51) appear in columns 22 to 25
in the flexural part of table 5 (a). This separation of real
and imaginary parts allows the displacement due to each part
to be computed separately. A similar explanation can be
made for the quantities in columns 3 to 6 and columns 18 to
21 in the torsionel part of table 5 (a).

Real and imaginary parts of the concentrated loads that
are equivalent to the distributed loads are computed as
explained previously by the formulas of appendix C. These
values are shown in columns 8, 9, 27, and 28 in the flexural
part and in columns 8, 9, 23, end 24 in the torsional part.
The real and imaginery parts of the loads due to the con-
centrated mass follow next in order, and the total concen-
trated loeds are given in columns 12 and 31 in the flexural
part and in columns 12 end 27 in the torsional part. The
average shears, average twisting moments, and bending
moments are then computed as described previously.

The remaining parts of the computations in table 5 (a)
that are associated. with the real parts of the load are de-
acribed as follows (the remaining parts that are essociated
with the imeaginary parts of the load are similar): Column
10 in the flexural part gives the distributed curvature due
to the real part of the load. This curvature is obtained by
dividing the ordinates of the real part of the bending-moment
curve by the local values of the complex flexural stiffness
EI(1+4ig,)(14+1go. In these examples, any actual strue-
tural damping is disregarded: therefore g, is zero. The
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factor 1+1g., containing the as yet unknown artificial-
damping coefficient, combines with «* to give the factor 1/C
L.
in column 16, C being the arbitrary eigenvalue 1_1(—:Tg¢
If the actual structural damping g, is regarded as other than
zero, the values in column 16 would be computed as follows:
The real and imaginary parts of the bending moment would
be combined into the complex bending moment Mg+idf;.
This complex bending-moment distribution would then
be divided by the local values of the complex stiffness to give

i fo-I-‘iﬂ{,___. . .
EI1 _I_,ig') (1 +‘ig¢_) The factor 1 +1.g¢ would be carried
along in the arbitrary eigenvalue C, and the numerical values

of the real part of the quotient Ej——;?l—lz:fg{:) would be placed
in column 16. The imaginary part of the quotient would
he similarly placed (in column 35) in the celculations asso-
ciated with the imaginary part of the load. The average
twists due to the real part of the load are computed in
eolumn 14 in the torsional part of table 5 (a), and those
due to the imaginary part of the load must also be computed.
These calculations follow the same pattern as those just
explained for the eurvatures. The complex torsional stiff-
ness GJ(14+1g,)(1+1g.) enters in place of the complex
flexural stiffness. If GJJ or g, is variable over a bay length
or over the whole span, the numerical integration for the
torsional part of the calculations should be carried out as
explained in the part of table 1 (a} that deals with variable G.J.

The numericel integrations are complefed in the manner
already described, and the derived mode is thereby obtained
in the form of four components of displacement. The
flexural components are 7,:® and #.:® of columns 21 and 40
in the flexural part. The torsional components are ¢,2® and
our® of columns 17 and 32 in the torsional part. However,
these components are not actually the real and imaginary
parts of the flexural and torsional components of the derived
mode, because each one of them contains the complex factor
14+1ig.. Nevertheless, the complex derived mode is given
by y12® +iyu® and ¢2® +igu®.

The complex ratios of the complex derived mode to the
romplex assumed mode are computed in column 4! in the
flexural part and column 33 in the torsional part. Only
two of these ratios have actually been computed but they
are sufficient to indicate the need for further cycles of
iteration.

A total of four eycles of iteration (the main results of the
last three are shown in parts (b), (¢), and (d) of table 5)
was required for satisfactory convergence. In columns 6 of
table 5 (d) and immediately below table 5, the smoothing
device described previously is applied to obtain the best
single value of the ratios. The fundamental (first) eigen-
value is that value of €' which msakes the ratio unity. Thus

272493—54—-21

(1=(269.5—82.2i) m, and since C) is defined as 1+1;g¢;,
EI[.I. Wy

the frequency and artificial damping of the first mode are
obtained from the real and imaginary parts of the equation

1‘[‘{9‘1_ _ o5 1\0‘7
T le—(269.5—82.2i) 7L

(52)

The calculation of these quantities and the corresponding
airspeed »; which is obtained from the relation vt=b—km—1 are

shown at the bottom of table 5.

Tables 6 and 7 show the main results of the iterations fo
obtain the transformed second and third modes for £=0.1443.
Four cycles of iteration for each mode gave satisfactory
convergence. The assumed modes of columns 1 and 2 of
tables 6 (a) and 7 (a) were taken in the forms recommended
previously in connection with tables 2 and 3. In tables 6
and 7, the complex intermediate derived modes are given
by 2™ +iyer™ and ¢pe™ +ige™, the complex first-mode
sweeping functions, by ¥ue™ +iyur™ and ¢ue™ +idp,™
with shapes corresponding to columns 3 and 4 of table
5 (d), and the complex transformed-second-mode sweeping
functions, by Yue™ +Weer™ 80d Ppap'™ +1dwr'™ with
shapes corresponding to columns 7 and 8 of table 6 (d). The
results computed in and below table 7 give for the third
eigenvalue g,3=0.030 and w;=168.9 radians per second.
The corresponding sirspeed is py=390 feet per second.

COMPUTATION OF TRUE MODES

Because the critical flutter velocities are given directly by
the eigenvalues, knowledge of the true modes in flutter
problems is of no value (at least of no value recognized at
present). The same statement applies to the transformed
pseudoflutter modes, with the exception that in the iterative
method their determination is & necessary adjunct to the
determination of the eigenvalues. In ordinary problems of
forced vibration (at zero airspeed), however, the true modes
are often used with great advantage. For this reason and
for the sake of completeness of the presentation of the itera-
tive transformation procedure, the method of determining
true modes from results of the iterative transformation
procedure is illustrated in tables 8 and 9.

The computations in tables 8 and 9 pertain to the same
wing analyzed in the previous examples. The modes com-
puted are for £=0.1443. The true third mode as computed
in table 9 may therefore be compared with the flutter
mode computed for this wing by the operational method in
reference 5.

In table 8, the true second mode is computed as follows
from functions appearing in the last cycle of iteration for the
transformed second mode (table 6(d)): Preceding the table
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proper is the calculation of the eigenvalue factor F: ,,=%-—1
2

that is needed for computing the true second mode. In the
terminology of tables 6(d) and 8 and as shown in appendix A,
the true-second-mode shape is given by

Yoo+ i ¥u=Ur+ 1)+ (Yaz®™® + 1 Yer™®) (53)
and

¢t idur={b1r+ 1)+ (azr® + 1 de2s™) (54)

in which

W L gar thi :
ym+iyu=____y"”‘ Oj_?‘y"” Ce (55)
ot

and

. (4) i 4)
bt ¢H=fm#w__

ot

Columns 1 of table 8 show the key ordinate (¥s2® +1401:®)4 of
the first-mode sweeping function g2+ ®, Gp1e® + iy @
as given in columns 5 and 6 of table 6(d). The key
ordinate is taken as the largest ordinate (the ordinate at
station A) for the reason of accuracy cited previously. The
key ordinate of the first-mode shape ¥,2-+1yu, d1a--idy (equal
to the first terms on the right-hand sides of equations (53)
and (54}) is shown as the boxed value in column 2 and is
obtained by dividing the value in column 1 by the eigenvalue
factor Fy;. The other values in columns 2 are obtained by
using the key ordinate in conjunction with the first-mode
shape given in columns 3 and 4 of table 5(d). Columns 3
show the transformed-second-mode shape ¥oor® +1Yexr®,
®a2e® +1i¢es® (equal to the second terms on the right-
hand sides of equations (53) and (54)) given by columns
7 and 8 of table 6(d). The sum of columns 2 and 3 which
is given in colummns 4 gives the shape of the true second
mode Yar+1Y2, drt+idy (equal to the left-hand sides of
equations (53) and (54)).

In table 9, the computation of the true third mode pro-

ceeds as follows: The necessary eigenvalue factors F, 1s=%— 1
3

and Fu=g?—1 are computed as shown. In the terminology
3

of tables 7(d) and 9 and as shown in appendix A, the true-
third-mode shape is given by

Yart+1¥ar=Wne+iynn)+ (#12r+ ‘i:ym) + (ym-l-iym) +

(Ya3r® +1Yapr @) (67)
and
b3zt idar=(dur+idu)+ (Pt 1id12) + (desn+ Toor)+
(Pasr™® +1aer®) (58)

in which

o . e .
(ﬁ—' 1) (yun'f"&ym)-l'(?:—l)(Ihm'l"tym)
=yYnr" + iy (59)

oo (%—1)(¢11§+i¢u:)+(%:—1)(¢1m+i¢m)

= e +1dps® (60}
@ Ly
Yare+ 1Yoar= Yourz T3Yvuer ~ C'j— VYo (61)
A 1
@ @
Pasnt+1i _—_?”_“"’R_Ogiqiqsw . e (82)
¢!

and Yt tYier, Gretidnr IS 10 Yart WYer, ¢ﬂk+i¢aﬂ_“ as
ym-l-iyu; $irt1¢y, is to Ya2r® +1e2r® , Ga2r® +19ea® in table
8. The key ordinates (yu® +typs“ }4 and (Pr22® + 1dsaar™® )
of the first and second sweeping functions appear in columns 1
and 2 and are taken from columns 5, 6, 7, and 8 of table
7(d). The key ordinate of the functions Fuu(yi2e-+1itiar),
Fay(12+ 111}, which are equal to the second terms on the
left-hand sides of equations (§9) and (60), is computed in
columns 3 by using the key ordinate of columns 2 in con-
junction with ordinates at stations A and B in columns 2
and 3 of table 8 as follows:

(Fos(Y1221+ T¥120)4) abien
=|: (1e+1Y10)a
(&

cm(l) +i¢¢21(5))3

Thelkey ordinate of the functions Fra(y1e+ 1911, Fralénr+idus),
which are equal to the first terms on the left-hand sides
of equations (59) and (60), is given in columns 4 and,
in accordance with equations (59) and (60), is the difference
between y¥ng® -1y, éna" +ids® of columns 1 and
Fu(Yurtithar), Fulbur+tieu) of columns 8. The key ordi-
nates of the first-mode shapes yur+iyur, dur+idns and
Yier+Tar, Prae+1di2r are shown in columns 6 and 5 and are
obtained by dividing the values in columns 3 and 4 by the
appropriate eigenvalue factors. The sum of the key ordi-
nates of columns 5 and 6, shown as the boxed value in col-
umn 7, is the key ordinate of the total-firsi-mode shape
Yz + s, é12-F1ér which is equal to the sums of the first two
terms on the right-hand sides of equations (57) and (58). The
other valuesin columns 7 are obtained by using the key ordi-
nate in conjunction with the first-mode shapegivenin columns
3 and 4 of table 5(d). The key ordinate of the transformed-
second-mode shape YurWar, Swatidar, which is equal

] [Frs(Pazr -t Parr)n] ravren  (63)
table 8
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to the third terms on the right-hand sides of equations
(57) and (58), is shown as the boxed value in ecolumns 8 and is
abtained by dividing the value in columns 2 by the eigen-
value factor Fz. The other values in colurnns 8 are com-
puted by using the key ordinate in conjunction with the
transformed-second-mode shape given in columns 7 and 8 of
table 6(d). Columns 9 show the transformed-third-mode
shape Yur™ +1¥ar™, doar™ +10ar® (equal to the fourth
terms on the right-hand sides of equations (57) and (58))
given by columns 9 and 10 of table 7(d). The sum of col-
umns 7, 8, and 9 given in columns 10 gives the shape of
the true third mode e+ i¥ysy, ¢sr+idy (equal to the left-
hand sides of equations (57) and (58)).

TRENDS AND COMPARISONS OF NUMERICAL RESULTS

Results of the computations shown in the preceding
section of the report together with results of similar compu-
tations based on other assumed values of L are given in
figures 4 to 6. Figures 4 and 5 deal with the wing to which
the concentrated mass is attached. Figure 6 gives data of a
similar nature for the same wing without the concentrated
mass. The computed results obtained by the Rayleigh-
Ritz and operational methods and the experimental results,
all of which are given for this wing in references 5 and 6, are
also recorded in figures 4 to 6.

In part (a) of figure 4 the solid curves show the variation
of the artificial-damping coefficient g, with airspeed in each
of the first three solutions. For each assumed value of £ &
dashed curve is drawn through points that represent solutions
for that value of k. Part (b} of figure 4 shows in & similar
way the variation of the frequency « with airspeed and the
lines of constant values of k. The facts of particular interest
that are shown by these plots are as follows:

(1) The true flutter condition is given by the third solution
for a value of k between 0.1443 and 0.1590 at an airspeed
almost equal to that found in the experiment. Here the
computed value of g, is zero. The computed frequency at
true flutter is also in very close agreement with the experi-
mental value,

{(2) The operational solution is in good agreement with the
experimental solution, but the solutions obtained by the
Rayleigh-Ritz method with three and four modes vary by
72 percent and 22 percent, respectively, from the solution
obtained by the operational method. The operational solu-
tion is theoretically the most exact even though it involves
summations of finite numbers of terms of infinite series.
However. as pointed out in reference 5, its use is limited in
practice to wings of uniform section. In the present example
the results obtained by the iterative method would be
expected to be better than the results obtained by the

Rayleigh-Ritz method because the eight degrees of freedom
used in the iterative method are much less restrietive than
the three or four used in the Rayleigh-Ritz method.
Altbough exact agreement of the results of any of the com-
putational methods with the experimental results is not to
be expected, the better agreement of the iterative solution
as compared with the operational solution is at first sur-
prising. On further observation, however, this agreement
must be credited to a fortunate disposition of the errors
involved in the iterative method because, in the case of
figure 6, the relative order of agreement of the eperational
end iterative results with the experimental result is opposite
to that in figure 4.

(3) The trends of the solid curves representing the first
and second solutions in figures 4 (a) indicate that both may
cross the zero artificial-damping axis at very large airspeeds.

Experiment (reference 5)
Operational solution (reference 5)
Rayleigh-Rifz: 3 modes (refererce 6)
Rayleigh—-Fitz: 4 modes (reference 6}
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But this conjecture is of no practical interest so long as &
curve (the third solution) that crosses at a lower airspeed
exists. However, the question of whether the curve for
some solution higher than the third could cross the zero
artificial-damping axis at an airspeed lower than that at
which the third solution crosses demands an answer.

(4) Reasonable assurance that, among all possible solu-
tions, the curve of third selutions in figure 4 (a} crosses the
Zero artlhual-dampmg axis at a lower airspeed than any
other is provided by the trends of the curves for constant
vilues of £ in parts (a) and (b) of figure 4. The curves of k
show that the curve representing the fourth solution will
mast assuredly lic above and to the right of the solid curves
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in figure 4 (b} and probably below and to the right of the
solid curve for the third solution in figure 4 (2). The curves

of k in figure 4 (b) are straight lines by definition (k =—b—nﬂ

Prediction of the courses of the curves of £ in figure 4 (a)
cannot be made with much certainty. They have a strong
tendency to proceed to the right, but it is easy to believe that
upward or downward changes in their directions could take
place. The curve for the fourth solution, however, would
probably cross the zero demping axis at a value of r between

500 and 600 feet per second in figure 4 (e). '

Figure 5 shows and compares the amplitude and phase
distributions of modes computed by the iterative transfor-
mation procedure and by the operational method for the
wing with a concentrated mass. The first and second modes
as well as the more important third mode from the iterative
solution for k=0.1443 are plotted, and the third mode from
the iterative solution for £==0.1590 is also plotted. The
third modes from the iterative solutions for the two values
of & agree very well in shape with the flutter mode obtained
in reference 5 by the operational method, and the operational
mode lies between the two iterative modes. Thus the
agreement of the iterative and the operational methods is
again evidenced. '

Figure 6 is & plot similar to figure 4 but relates to the
behavior of the wing analyzed in figure 4 if the concentrated
mass is not present. There is very little similarity in the
data of the twe figures. The most notable difference is that
in figure 6 the true flutter mode appears in the second solution
instead of the third as before and that the flutter speed is
lower than before. Of interest is the occurrence of almost
equal eigenvalues in the second and third solutions for
£=0.50. The flutter speeds given in figure 6 by all methods
of solution, including the Rayleigh-Ritz method, are seen to
be in substantial agreement.

CONCLUDING REMARKS

The report has deseribed the iterative f{ransformation
method suggested by H. Wielandt and has demonstrated
the use of the method in an orderly computation of critical
flutter speeds. Numerical comparisons with solutions ob-
tained by other methods and with experimental values have
been made. The applications made in this report show
promise for future practical use of the method.

LANGLEY AERONAUTICAL LABORATORY,
NaTionaLlL Apvisory C'OMMITTEE FOR AERONAUTICS,
LaxgLey Fiewp, Va., January 17, 1951.



APPENDIX A
ON THE CONVERGENCE OF THE ITERATIVE TRANSFORMATION PROCEDURE

INTRODUCTION

The extensive existing: literature on the eigenvalue prob-
lems is concerned almost exclusively with the class known as
self-adjoint problems, in which the eigenfunctions and eigen-
values are real. In recent years, non-self-adjoint eigenvalue
problems have received increasing sattention. This class
includes the flutter problem in which the eigenfunctions and
eigenvalues are generally complex. The literature referred
to by Wielandt in reference 3 reveals that the non-self-adjoint
eigenvalue problem and the transformation method for its
solution have been given some attention since at least 1928.
Wielandt’s own work constitutes probably the most extensive
contribution on the subject.

The discussion on convergence given herein is not con-
tained in Wielandt’s work and may be considered a rigorous
proof if the following assumption is valid: that the equations
{equations (41) and (42)} for the system (the wing)} under
consideration have an infinite number of solutions that form
a complete sef for any value of the reduced frequency k.
In the subsequent demonstrations, the validity of expanding
arbitrary displacement functions in infinite series of eigen-
functions depends upon the validity of the assumption.
That complete sets of eigenfunctions do exist seems plausible
enough to justify reliance in the conclusions.

BASIC RELATIONS

For any one of the true solutions of the eigenvalue problem,
for example, the eigenvalue C, and eigenfunction ¥a,ém,
equations (41) and (42) may be written as

Cogpm= [ [ o (5P ryat-Po o d) (AL
-mym—ﬁﬁmﬁﬁ(vym“{_ o on)(dz)t  (Al)

and

1 Lo ' 2
Cote= [ grirrs |, (@vatQen@n? @2

To make the notation more concise, let the coupled mode
Ym,Pn De represented by w,. Then if yw,¢» is substituted
into the right-hand sides of equations (Al) and (A2), the
left-heand sides may be represented by Cuton. Furthermore,
because of the linear character of the equations of the prob-
lem, substitution of the function series

«
Eatwi

into the right-hand sides of equations (A1) and (A2) gives
318 .

(A3)

for the Jeft-hand sides the funetion series

;10{@{101 (A.4)
The coefficients @; are, in general, complex. The complex
eigenvalues C'; are assumed in the subsequent proofs, except
where stated otherwise, to be different from each other, and
the eigenvalue having the largest modulus is defined as (i,
the second largest, as (%, and so forth, so that

[GIS[CISGI> . . . (A5)

Expressions (A3) and (A4} are the expansions, in terms of
the eigenfunctions and the eigenvalues, of the functions
previously referred to as the assumed and intermediate de-
rived modes, respectively. The subsequent proofs of con-
vergence are based upon the fundamental relationship that
exists between expressions (A3) and (A4).

FUNDAMENTAL MODE

The fundamental mode and eigenvalue are found by itera-
tion according to the original Stodola procedure. In the
present terminology and notation, this procedure and its
proof of convergence are as follows: The coupled mode as-
sumed at the beginning of the first eycle of iteration in general
contains some component of each of the eigenfunctions;
therefore its most general expression is

L
wi® =23 anw
-]

The intermediate derived mode (which in this case is also the
final derived mode ingsmuch es no sweeping operation is
required to obtain the first mode) is for this first evele of
iteration

(46)

‘u:-b“’ -=-'w1(2’ =i O{a (Wi (AT)
fe=1
The second and following cycles are begun with the final

derived mode of each preceding cyecle, and thus the assumed
and derived modes of the nth cycles are

™ =ii Ci*laay (A8)
=1
a, =D =i Citaan, (A9)

=1
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In accordance with the definitions given in equation (A3),
all terms on the right-hand sides of equations (A8} and (A9)
except the first are negligibly smell in comparison with the
first for large valuesof n. In the limit the fundamental mode
is obtained as

lim w0, * 0 =lim C*aw; (A10)
R—o A—x
and the fundamental eigenvalue is obtained from
(r+D)
lim 2% (a11)

w,™ -1

n—a
TRANSFORMED SECOND MODE

The initial assumption of the transformed second mode
in general is of the form

» TR
’-’-'azm=,?‘_, b l:'wf— ‘—i) u‘x:l
=2 Wi/a

in which the arbitrary coefficients b, are in general complex
and the subscript A refers to values of either the flexural or
torsional components of the eigenfunctions at station A.
More specifically, if, for example, the nodal (zero) point of
wa is selected to be at station A in the flexural component,
then the subscript A refers only to the flexural components
of wy, ws, Wy, . . . and not to their torsional components.
Thus each term of the series in equation (A12) satisfies the
requirement that either the flexural or torsional component
of the assumed mode be zero at station A.

To simplify the subsequent work as muech as possible, the
eigenfunctions are henceforth assumed to be normalized to
unity at station A; thus

(A12)

(;Wg)A=1 (i=1,2,3, RPN ) (A13)
Equation (A12) now takes the simpler form
w;e“’=ﬁ‘, bo(w—w) (Al4)
fml

The assumed mode given by equation (Al4) leads, ac-
cording to equations (A3) and (A4), to the following inter-
mediate derived mode:

’U-‘a(“=i b,(Cw,—Crwn) (A15)
=2
Sweeping of this intermediate derived mode with the first-

mode shape (previously determined) leads to the derived
transformed second mode of the first cycle as follows:

w

(39} @
1.:'1 );w::g Cgb;(uf{—wl) (A_]_ﬁ)

w.:_ﬂ“:w,,“*—(
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When each succeeding cyecle is begun with the derived
transformed second mode of its preceding cycle, the various
functions for the nth cycle are

W™ =§ C b fwe—uwn) (A7)
wb(‘) =é Og‘"lbi(cgwr—o,w;) (A.].S)
w.g“‘"‘” =§2 C’f"bg(wt—-wl) (Alg)
The limits as a approaches infinity are

[im e, t0 =1im C2by(w,—)) (A20)

n—o fa—ox

and
(a+D)

fim S =€ a2y

Equations (A20) and (A21) show that convergence to the
exact-transformed-second-mode shape w,—w; and to the
exact second eigenvalue % can be obtained theoretically.

TRUE SECOND MODE

The key to computation of the true second mode is readily
found in the simple case illustrated in figure 1. In this case
the sweeping function of the final e¢ycle of iteration would be
the displacement produced by the forcing load ¥ (wt—w )y,
in which y, is the first-mode component of the transformed
second mode ¥.,. The sweeping function is designated by
5 Which has a well-defined numericel value in the iteration.
Thus the value of y; could be found from the equation

Yot —w ws?
Y= ZTwI,lz)y[=<w:= T)wm (A22)
that is,
_ Yu
Y=o (A23)
s—1
wr

The sum of ¥, given in the iteration and #; given by equation
(A23) gives y,, the true second mode; that is,

Yoth=yr—NT=V: (A24)
By analogy, the true-second-mode shape in the general

(complex) problem under consideration is found as follows:

The limiting value of the sweeping function is, from equation

(A18),

: — (»)

im wy® =lm ( =2

AR—a n—x 1

)wl=lim Cp %—1) bav, (A25)
p-1 R—o 2
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The expression analogous to equation (A23) is

lim wp, @™
SO i b 420)
O, '
The expression analogous to equation (A24) is
Bm w,, ™
lim w.,,‘“+1’+""c",—'=hm et bzwz (A27)
fi—ran > 1 N—b00 .
Cy

which gives the exact shape of the true second mode.
TRANSFORMED THIRD MODE

The first cycle of iteration for the transformed third mode
begins with an assumed mode that has two zero values, one
of thede being in the same (flexural or torsional) component,
and at the same station (station A) as previously employed
for the transformed second mode. The other zero value
may be taken in the same component as was the first zero
value and at a different station (station B), or it may be
taken in the other component at any station, including
station A. Either of these possible selections for the loca-
tion of the sccond zero value is indicated in the following
equations by use of the subscript B. The initially assumed
transformed third mode may be written as.

uJ_p d,[w;——wl

in which the arbitrary coefficients d; are complex. Each
term of the series in equation (A28) is zero at station A by
reason of the normalizations stated in equation (A13), and
cach term is also zero at station B.

The various displacement functions for the general (nth)
cycle of iteration may be expressed as follows: The assumed
mode is

_"u‘f:-)a(w,—wl)] (A28)

We—w,
W™ =23 C*~d;| w,—w,—
a3 2 1 1| Wi "\ w—w,

The intermediate derived mode is

wb(“) =é C‘H_Id; [ng‘— Cl’wl—' z;:z;)a(oswi_ Olwl)]
(A30)

The result after sweeping the intermediate derived mode
with a first-mode shape such as to make the sum zero at
station A is as follows:

wb(ﬂ)

(n)
e )Awl_p C- ldi[ot(wi""wl)_

w
(@:&y—;)sos(wz—wl)] A1)

@, wo] (A29)
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Sweeping of the mode given by equation (A31) with a
transformed-second-mode shape such as to make the sum zero
in the flexural or torsional component (as the case may be) at
station B gives the derived transformed third mode as follows:

W™
- ,wb(n) — w,
Wy Wy Ja .
w— (wz—’wl)
w Ja Wy~ W,
-]
=3 C*d; [wt_wl_ ) (’w°—‘w1)]
_gﬂ Wy— Wy

The limits as n approaches infinity are

WD —apy M —

(A32)

Lm 'waa(u'H) '_'llm Cs“ds [‘w;'—wl— WQ—'W) (wg wl)_l (Add)

n—wo

and
. LD _
e G (439

As shownby equations (A33) and (A34), convergencc, tothe ex
act-transformed-third-modeshapewy—w, — w ™ ) (wa—wy)
— W

and to the exact third eigenvalue Cj can he obtained theoreti-
cally.

TRUE THIRI» MODE

Computation of the true third mode is explained by refer-
ring again to the simple problem of pure flexural vibration
in which air forces are excluded. The transformed third
mode in this simple problem would be given by

ot (YY1 o .
Ya=Ys:—% (yg_yl)z(ys Y (A35)

The total Ioad required to hold the beam in equilibrium in the

shape y,; is
Bl ot (B220) 4, A30)

Yotz —yw? [ <

If the beam is vibrating with shape y., at frequency wy, the
inertia load is given by

“jsz’yaa=’.sz’ [ﬂs—yl—(;{:—:}g‘: B(‘ys—yx)] (A37)

The forcing load required is the difference between the total
load (expression (A36)) and the inertia load (equation (A37)),

that is,
ya_yl) ] ’
Ya—1i/s Y1t v(es

¥(wp*— ;) I:l -
The displacement produced by this forcing load is

()G I ) () o

Ys—

(A38)
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and this displacement must be equal to the sum of the
sweeping functions in the last cycle of iteration (if the
iteration has been carried to complete convergence). The
first sweeping function is of the first-mode shape and the
second sweeping function is of the transformed-second-mode
shape. If the expression (A39) is written in the form

Ya—¥ ‘ws® Ys—U
- -0 (2,
)[ ( )B:[II1+ ws® Yo=Y By1+
wt O\ (Y B
a® 1_) (-yg—yl)a(y" %)
such of the sweeping funetions contained in the displacement
produced by the forcing load is obvious. Thus

o) [ () P ) (G2

(A41)
and

(A40)

yb¢2=(\:} 1) (g:-g:),(y’_y‘) (A42)
in whieh yu; and ¥ designate the first and second sweeping
functions, respectively. Both of these functions have well-
defined numerical values in the iteration.

If now a simpler notation is adopted, equations (A41} and
{A42) can be written as

yo:=(':%;—1)yu+(:—:;—1)yu (A43)
utu| _
.’/m-:=(:'—":;— I ) Yaz (A4d)
in which
= — 4. )
Ju l:l yg_ yl) :I?h (A45)
L) g, (A46)
aid
'Ia'—( Ja ) (y2—y0) (A47)

The true third mode is clearly given by the sum of equations
{A35), (A43), (A46), and (A47); thus

Ys=Ya+Yu+vViet Ve (A48)

The transformed third mode 7, is given directly in the
iteration. The procedure for finding the other components
on the right-hand side of equation (A4S8) is as follows:
Component ¥q, by equation (A44), is

Y=g L (A49)

wz

2724893 —54 22

Component ¥, is known when ¥4 is known because its rela-
tion to ¥ was established previously in connection with the
transformed-second -mode calculations (see equation (A24)).
Component ¢y, is then found by equation (A43) as

I _I)yl,.

wl’

Yu— (A5 O)

By anslogy with the foregoing ease, the true third mode in
the complex-eigenvalue problem is found as follows: The

limiting value of the second sweeping function is (see equa-
tions (A31) and (A32))

(l)
PSR i 0 ]

im w@paa

=Ij.m 03

nve 1) (w —w) (=)

The limiting value of the first sweeping function is (see
equations {A30) and (A31))

(u)

—lim C,*d, [C‘ 1— (

n—o

(A51)

lim wy"™=—hm

R—ra n—+o

&) (2=, ]
(A52)

The quantities anelogous to y;; and y. of equations (A43)
and (A44) are, for the present case, lim ;"™ and [Im 10,™.

n—o n—+o
The latter quantity is obtained from the relation analogous
to equation (A49) as follows:

ﬁmwm_

lim Was (= _C——hm Cx“d; W; WI
R ~1

1 A

(wz——wl) (A53)

The relationship of lim 1,,™ and lim w,,™ is obtained from

A=+ n—a

equations (A26) and (A20) of the section dealing with the
transformed second mode. Thus,

l' ., (R)
i (00 ™)sl o, casm | e

q(l) —
},L_I.E W n—= [(waz(”'n)nl Eq. (A20) Q_
C, Ey. (A%)
. wWy— W
—lim Cd (1=2) w, (A54)

The quantity analogous to y, of equation (A43) is, for the
present case, im uy,‘® and is obtained by an equation

n—+o
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analogous to equation (A50) as follows:

llm ‘wu“‘)

- N—w

) ] wi  (A55)

The exact shape of the true third mode uy is given by the
sum of equations (A33), (A53), (A55), and (A54), which is

lim (w 3(I+1) +‘w52(.) +wn“" -I-wu‘“’) ].lm Osﬂdauk (A56)

n—o

Hm w222

o

lim ’wu‘"’ —(—‘—' i
=1

=lim Canda [1 —_

Ao

FOURTH AND HIGHER MODES

Extensions of the proofs to modes higher than the third
can be made in & manner similar to the foregoing proofs. By
this means, the iterative transformation procedure can be
proved, under the assumptions stated at the beginning of this
appendix, to be convergent for all modes and eigenvalues.

CASES OF EIGENYALUES HAVING EQUAL OR NEARLY EQUAL MODULI

For a representative case, suppose that

ICL >{Ca; ICsI>ICI> . .. (A57)
and that
[, =]C4] (A58)
or that
1Cs| = |Cs (A59)

Under conditions (A57) and either (A58) or (A59), the
assulned and derived modes after a few cycles of iteration
will be virtually as follows (see equations (A17) and (A19)):

a2 ™ = Oy ~1hy (Wa—w1) + 5"~ 1b; (w3 —w,) (A60)
Wa D = Cy*by (Wy—w;) + Cy"by (w3 —w)) (A61)

If |Cij is only slightly greater than |Cy|, the second terms on
the right-hand sides of equations (A60) and (A61) become
negligibly small very slowly as » increases, even though
they do become negligibly small as n approaches infinity.
If |Cy] and |Gy are equal, these terms never become negligi-
bly small. Thus, the problem of circumventing this slow
convergence or apparent lack of convergence arises.

A satisfactory method for coping with these conditions is
to combine linearly the results of the last two cycles of the
series of iteration cycles that have been performed. For best
results in an actual problem, not less than the third and
fourth cycles should be used for this purpose in order to
reduce as much as practicable the effects of all higher-order
components.

The following formulas for combining the results of the
last two cycles are based on the assumption that the assumed

and derived modes in each of the cycles contain only com-
ponents of the types in equations (A60) and (A61).

The two components (with shapes wp,—w, and wy—uy)
clearly appear in the last cycle in proportions different than
in the preceding cycle. (The proportion in each cycle is a
complex function of the spanwise coordinate.) Because of
this differing proportionality the results of cycles n—1 and =
can be linearly combined so that the combined functions
contain only one of the components wy—w, and wy—w,.
Accordingly, the ratios of both the flexural and torsional
components of the combined functions at all stations should
be equal to each other. In algebraic terms, this statement
means that

(r‘wcz(") +waz(“+“) _

0 T wa® g (462)

in which 7 and R are (complex) constants, and the subscript
S designates that the ratio may be evaluated at any station
S, that is, that R has the same value for all stations. AR w
functions must be the same type of component, cither flex-
ural or torsional.

Since S can be any station, the equality

(rw¢2(ﬂ)+wﬁ(ﬂ+u) _ (rwﬂ(ﬂ)_*_wa!(ﬂ'l'n)

M0 ® P+ wa™ /i \rwa® P +wa™ /2

(A63)

exists, in which stations 1 and 2 must be different or may
be the same, depending on whether the w functions on the
left-hand side are the same or different types of components
than those on the right-hand side. The two values of r
that satisfy equation (A63) are

A@L D

A=D1, 41 AT, F\E
r=—gZa-nm :I:\/(2A(n—l).(n) — A @D, (A64)
in which .
AB-D,m W™~ (ar™"s (A65)
(W ™), (1002}
(Wae ™), (war™)s
ABL e+ : (A66)
Waa® V) (W™ M),
4®-1.(8+D SR (0™ (A67)
) (Wa V), (g ™M),
The corresponding values of R are
Am=D.atn AG-D,RFONT 401, (D
R= 94 R=11.m + 2Am—u‘.'<‘nT _H‘(RT).(F
(), A 4 (A=
_A A (A68)

r
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These values of R are equal to C; and (%, and the corre-
sponding values of r, when placed in the expression

T'iqa e} +W¢(:+n (Aﬁ 9)
give modes of the shapes w,—uy and wy—w,. When [(Y] is
nearly equal to |(j], the appropriate set of R and r to give the
lower trensformed mode wp,—w, is evident. When |Cy| and
|Cy| are equal, the mode obtained by equation (A69) with
either value of » may be used as the transformed second
mode, but the trends of the eigenvalues that have been or will
be determined at other values of the reduced frequency &
may be used as a guide in making the selection that fits the
trend.

In actusl computations, one further cycle of iteration be-
ginning with an assumed mode given by expression (A69)
should be carried out to assess the extent to which the fune-
tions w® Y, w,™, and we**? are free of all except the
two components of the types appearing in equations (A60)
and (A61). If the ratios of this cycle are not reasonably
constant, the unwanted components still present have to be
removed by carrying out another cycle of iteration and
again applying equations (A64) and (A68).

The method just described is clearly applicable in the
general cases |Crx}=[Crs1| or |Cx| =|Cot].

Eigenvalues having equal moduli include the special case
of identical eigenvalues. As & basis for discussion let it be
assumed that

f(’li>|02[=ICs|>[04!> .. (ATO)

and that

Cg= C3=023 (A-T]-)

The significance of the occurrence of these two identical
cigenvalues is that the wing system may oscillate with the
same frequency and artificial damping in any of an infinite
number of modes. any two of which are linearly independent
of each other and of the first, fourth, and higher modes.
This infinite number of possible modes (all corresponding to
('} are the infinitely many linear combinations of two
basic linearly independent modes that are necessary and

sufficient in combination with the first, fourth, and higher
modes to deseribe an arbitrary displacement of the wing
system. Clearly, only two linearly independent modes cor-
responding to the double eigenvalue (i are required for
analytical purposes. These two are designated w3 and w3 as
before but with the reservation that wy and w3 must be
deriveble as two differing linear combinations of & single
basic pair of linearly independent modes that also correspond
to Ou.

Equations (A20) and (A21) are replaced in the present case
by
lim 10, Y= lim Cy® [b:(wy— )+ bs(wz—wy)] (AT2)

n—w

n—ro

and

. W (x+1r
lim —2—
A—+c0 wa

=Cz| (A73)

Equation (A27) is replaced by

. im wu(n)
lim 'wa"“"“ +’H5_= Hm 023'(62'")2‘[‘ b;w;) (A74)
A—+m __[_ 1 n—x
Ca

The transformed second mode (equation (A72)) is in this
case a linear combination of the first three eigenfunctions,
and the so-called true second mode is actually & linear
combination of the second and third eigenfunctions.

If the iterstive transformation procedure is now applied
in the regular way to determine the transformed third mode,
the third eigenvalue, and the true third mode, the results
will be as follows: The transformed third mode will be, like
the transformed second mode, & linear combination of the
first three eigenfunctions but will be linearly independent
of the transformed second mode. The so-called true third
mode will be, like the so-called true second mode, 2 linear
combination of the second and third eigenfunctions and will
be linearly independent of the so-called true second mode.
The results will also include 2 second determination of the
double eigenvalue Cy. It may therefore be concluded that
the iterative transformation procedure is valid and sufficient
in all cases of eigenvelue multiplicity.



APPENDIX B

THE COMPLEX STIFFNESS FOR BEAMS WITH STRUCTURAL DAMPING

The familiar concept of a complex force K{I4-ig)s in
simple (one-degree-of-freedom) vibrating systems having
structural damping may be easily extended to continuous
vibrating systems such as beams and airplane wings. The
quantity K is the elastic-spring constant, ¢ is the displace-
ment, Ks is the elastic-spring force, and Kgs is the structural-
damping force. . e

For a beam in flexure, the stiffness of the fibers is given by
the modulus of elasticity E, which is analogous to the quantity
K for the spring. The elastic stress at any point of the cross
section is given by ¢E where € is the strain which is analogous
to the displacement s. Then the complex stress at any

point of the cross section of a beam with structurel damping
is E(1+1ig)e. The complex bending moment corresponding
to this stress, obtained in the usual way by integration of
. )
the moment of the stresses over the section, is EI(1-1g) g—ﬁ
This result leads to the concept of a complex stiffness
EI(1+1ig,) for beams in flexural vibration with structural
damping. ~ Similarly, the complex stiffness of beams in tor-
sional vibration with structural damping is GJ(1--1gs).
The subscripts ¥ and ¢ indicate that the structural-damping
coefficient ¢ may have a different value for torsional vibra-
tions than it has for flexural vibrations. Both g, and gy may
be functions of the spanwise position z.

APPENDIX C
FORMULAS FOR EQUIVALENT CONCENTRATIONS AND INCREMENTS OF TORQUE

The formulas used in the numerical examples for com-
puting equivalent concentrated loads and curvatures are
those that have been derived in references 7 and 8. For the
concentration at an end station the formula is

- X

T’I=§Z (7p,+6p.—ps) (C1)
At an Intermediate station

- X

Po=—5 (p1+10ps+p3) (C2)

1

The significance of the quantities used in formulas (C1) and
(C2) is shown in sketeh 1,

»'Hl-q-——‘——
>
)

Bketeh 1.

These formulas are based on the assumption that the
distributed-load (or curvature) curve is a series of second-
degree parabolic arcs. When applied to distributed flexural
loads, the formulas give concentrations which produce the
same bending moments in the wing at all the selected stations
as the distributed load. The formulas may be correcily applied
to distributed torsional loads only if GJ is constant over each
bay. In this case the formulas give concentrations which
324

produce the same torsional displacement at all the selected
stations as the distributed load. For a station placed at a
discontinuity in ordinate or slope, formula (C1) must be
applied to both the left and the right of the station and the
results added.

The formulas for obtaining increments of arca beneath a |
curve of distributed torques are derived in refercnce 8.
These formulas are based as before on approximating second-
degree parabolas. They are given here in & slightly different
form: which is betler adapted to present uses. Thus

A=} (@H4gt )+ (@ )

A A
A2=§ (Q1+492+Qs)—74‘ (¢:— ¢3) (C4)
where the significance of A, and A; and of g1, gz, and ¢, is
shown by sketch 2.

Increments of - __ _ - Distributed-load

- -
torque % -~ L curve
- . —\——t\
\\‘ \
“ .
N
Ay
L' 2e %5
A & A »
Bheteh 2.

The ordinate at a discontinuity should not be used as the
middle one of the three ordinates selected for use in formulas
(C3) and (C4). The formulas are valid only where the three
ordinates are connected by a continuous curve.
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TABLE |—ITERATION TO OBTAIN FIRST COUPLED MODL
[Common factors for each eolumn are
/i ! & L o o .
%
5 4 3 2 1
Station :
Flexure: (a) First cycle
1 2 ' 3 4 5 L6 | 7 | % 9 10 11 12 13
_ ' - B Y
w P ’ 5 B P, ’ 1 M M
Station n w | Pet P » P Py 15;'} _ P A a
by 7\‘67 . _ Ntby Mby o
bt | b s oYY
b B B of & o ETx
1 1.000 (3.6 | O |[336 | 1430 | 1430 1430 0 0
T - 1430 | 14.30
2 .568 | 10.10| 0 [10.10| 10.26 | 19.26 | 19.26 14.30 | 14.30
] _ : 33.56 | 3336
3 J194 | 6520 o 6.62 { 52 520 l17.95| o |24.51 47.86 | 47.86
' , 58.07 | 3182
4 .054 | 1.82{ 0 18| 208 1.13 1. 13 79.68 | 79.68
- : . 59.20 | 3245
5 0 ()} 0 0 112.13 | 112.13
Torsion {with GJ constant over each bay): (a) First cycle
1 2 3 4 5 6 7 8 | o { 10 11
(48] ’ T T ol nw a
Station 4 Qu Qe g ¢ [ _O_uy Qo 7 ‘ T 8
by Adty ' Nby _ Mobty
T — _ Lt e
1 0 1. 397 0 1.397 | 0.594 | 0.594 _ 0. 59
= 0. 59 0. 59
2 . 794 0 . T94 . 800 . 800 - .80
. \ 1. 39 139
. 219 . 219
3 0 271 0 . 271 " 398 " 054 —14. 68 0 —14. 41
_ —13. 02 —~183. 02
4 . 076 ()} . 076 . 086 . 047 .05
—12.097 | —12.97
5 0 0 0

E¢ «“) Aot
2 (fyx‘" f_lm) 282 E—ﬁlw’

"
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OF FLUTTER PROBLEMS
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o
/,!
5 1 3 2 1
Station
(a1 First cycle—Continued (b} Second eycie (¢) Third cyele
- T T t ! : i f i
14 | 15 I 16 ; 17 I 1S , 9 | 1 1 2 l 3 ’ 1 2 3 4
H H ! .
. i ] | : B
_ : _ ”Lﬂ) o yl(‘) yl('l) Eyl(‘)
a If « ‘ B I Ay n® I~ : n® n® "o n® n® T T
. [ ' !
Nhgtby Mbhy Aitby defy . Malby e d Ma'by Aoty
“Elx LY ER LY b B | B b 127 ol P
280. 27 280. 27 1. 000 281. 65 281. 65 L 000 281. 90 | 281. 90
120. 90 | 120. 90
15. %0 15. 90 159. 37 280 . 569 160. 24 282 . 570 160. 36 | 282
105. 00 | 105. 00
{ég S |fi%.58 54.37 | 280 .194 | 5473 282 .194 | 5475 | 282 282
7L 46 39. 15
79.75 [ 43.70 15. 22 282 . 054 15. 33 284 . 055 1533 | 279
27. 76 15. 22
.60 | 27.76 0 0 0 0 0
(8) First cycle—Continued (b) Second cycle (¢} Third cyele
I _
12 l 13 l 14 ' 15 1 2 | 3 1 2 I! 3 ! 4
m m o ' )
¢ l & ‘ &1 % : o™ @ gim &® D ' %;T) %—im
I !
APy ' Mty Aoty Aly
aix | of el 7 P o7 i
0. 50 —12.28 | —1. 662 —_—— —0. 00594 —1.780 300 —0. (0633 — 1. 786 282
. 5 .
—12. 87 | —1.742 _——— —. 00622 —1. 861 299 —. 00662 — 1. 866 282
1. 39
—14.26 | —1.930 ———- —. 00689 —2 048 297 —. 00729 —2. 056 282 232
—7. 15 —7.11 —. 963 —_——— —. 00344 —L 022 297 —. 00364 —1 026 282
-7.11 0 0 0 0 0 o
EIu
an= %: 422&200=38.7 radians per second



TABLE 1.—ITERATION TO OBTAIN FIRST COUPLED MODE FQOR k=« FOR WING WITH CONCENTRATED MAS8S—Conecluded
Torsion (with GJ variable): (a) First cyocle

8cg

1 2 3 4 5 {] 7 8 9 10 11 12 13 14 15 16 17
— — W,
St".tion ¢1(D Qly Qi¢ q AT AT ) T Qly O\Q¢ . T T o A¢ A¢ ¢l“) ¢lm %:ﬁ‘
by Adty . Ay Ably o | Ahably Aty Aoy
» ot 14 «f S ot GJu o Gl « GJu o Elﬂw’
0 1. 387 0 1, 397 |- 0 0 0 0 ) ‘—12 25| —1.660 ————
. . 1, 089 1. 089 i 0. 60 0. 60
2 0 , 794 0 'L 1, 089 : 0 ’ 1, 00 1. 09 —12.85 | —1. 741 I
A U Y U - % IR B U W : N T R P R ) (RN B
. 164 . 090 ' —13.02 —7.15
4 0 . 078 0 . 076 1. 704 —14.68 | —12, 08 | —12. 88" . —47.10 —, 962 ———
: : . 028 . 015 : ‘ - —12.96 | —7.10 :
5 o |o | o lo | _ 11719 —14.68 | —12,06 | —12.96 | | 0 0

nd’ e

BOILAVNOYAY ¥WO4 ALLLIWNWOD XHOSIAQY TYNOILVN—E201 LUOdHH




TABLE 2—ITERATION TO OBTAIN TRANSFORMED SECOND MODE FOR k=« FOR WING WITH CONCENTRATED MASS
[Common factors for cach colun nre given urder the column headings)
j.: S o1 |
‘.
rd
b 4 3 2 1
Station
Flexure: (a) First oycle (b) Second cyele (e) Third eyclo
1 2 3 4 b 1 2 3 4 b 1 2 3 4 h 1]
(2 (0] 0 | Sy
. u“ a—lyﬂ
Siation Yesl® ¥ v | Ya® g‘:i(‘ﬁ Yar® '@ yu'® | Yl % Vas® 7' vu® | ya® ;/::h—) Eyq:“)
Mtby My Mthy My Aitb Moty
b s Vo7 i b B i e b Vol 27 P
1(A) 0 —174,1 {174, 1 0 0 —411,0 | 411, 0 0 0 —465, 8 | 465, 8 0
2 —. 281 |—107.7| v9.2 | —8 b6 | 302 —, 002 |—252, 5| 2342 —~1R. 3| 26,4 —.820 | —285.4 | 265.4 | —20.0 | 24, 4
3 —. 262 [ ~43.1 | 838 | —9.8| 36.0 —. 767 | —00.7| 80.0 | —10.7( 260 —, 882 | —112,0; 90,6 | —21, 4| 24.2 | 24.8
4 —~. 004 | ~13, 1L 048 | —3. 6| 383 —.293 | —80.2| 22,4 —7.8| 26.6 —, 849 —83. 8] 254 | —8.4|241
5 0 0 0 ] 0 0 0 0 0 0 0 0
Toarsion: (a) TMrat oycle (h) Beeond cycle (e) Third oyelo
1 2 3 4 b 1 2 3 4 b 1 2 3 4 b 6
(2 m ' W | Sp.af0
Btatlon L a? | oem® | pa® —",y:::( Pus® eu? | an® | au® :::m ba® G® | eu® | pu® i—cﬁ::m Eﬁ—é::“’
e Aoty Mty Moty
. For i BTy FI
1 1,000 |13. 88| —1,10( 12,28 | 12 28 1,000 | 24,04 | —2 60| 22 34| 22 34 1,000 | 26 22 | —2 95 | 28 27 | 23, 27
2 ., 901 13.88 | —1.16 | 12,238 | 13. 58 L007 | 24,05 | —2.72 | 22.23 | 223 .006 | 26,24 | —3,08 | 23.16 | 28.3
3 L0624 | 13,40 —1.28 | 12,12 | 19 44 .988 | 2506 —3,00(2205| 223 .988 [ 26,40 | —3,40 | 23,00 | 23. 3 23,3
4 , 322 6,70 | —, 03| 6,07 | 18 85 . 495 12 51| —1.50 | 11,01 22, 2 L4083 | 18,20 —1.70 | 11,50 | 23. 8
] 0 0 0 0 0 0 0 0 0 0 0

) W
%(—zﬂ% "‘dm )=-28 8 AL— w!) wy=188.8 radlans por second

v¢ulm

SHETHOYd ¥HILLATA 0 NOILLATOS TVOIHHRAN HOd HINdADIOYd NOILVRYOISNVIL TAILVIEALI NV

6¢E



TABLE 3—ITERATION TO OBTAIN TRANSFORMED THIRD MODE FOR k=« FOR WING WITH CONCENTRATED MASS

[Common factors for each column are given under each column heading]

0ge

R —
7B
b 4 3 2 1
Btation
Flexure: (a) First eycle (b) Becond cycle (¢) Third cycle
1| 2 3 4 5 6 1| 2 3 4 | 5 6 1| 2 3 4 | 5 | @ 7
™ ® ) )
Station Ya'® | 10 | yn® | vie'? | yat® ::m Vas® | 7D | yu® | yea® | ya® %‘::_m' va® | 1® | yu® (e | yal® :::(,, E"z':—::“;'
Aotby Moo | Nby My My Mty
b By 7P I Bl 17 Pl N L Bl ¥ 7 Pl
1(A) 0 448. 1] —448, 1 0 0 0 405. 5| —405.50 0 | © 0 4040/ —404.00 0 | 0O
2 . 962 271, 5| —2b4. 8] —11.1| 5.6 59 | 1.000| 243.7f —230.6| —5.9| 7.2 7.2 1. Q00| 242. 8] —230.0 —5.9] 6.9 8.9
3 1.000| 104.0 —87.0 —11.9] 5.1 51 . .911f 91.6) —788 —6.3 6.5 7.2 .03 91.3 —785 —6.3 6.5 7.2 7.07
4 .390 3.0 —~24.4 —47 1.9 4.9 : L339 27.00 —22, 1] —2. 5 2.4 7.1 . 333 26,90 —22,0( —2.5] 2.4 7.1
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Torsion: (a) First cycle . (b) Second cyecle ' (c) 'Third eycle
1 2 3 4 5 8 1 2 3 4 5 8 1 2 3 4 5 6 | 7
(@ w (9 0]
Station da'® | S 1gu® ¢mf” dua'® zf(ﬁ 3a® | 60 | pu® | $ra® | pa® %:—:E $a® | 0@ | au® [ $pa® | s %ﬂ—@' %%::—@
Mty Aty Mty
Bl 7 i V7
1(B) 0 —15. 79| 2, 84| 12. 95 0 0 —9. 4681 2 b7 8. 89 0 0 —9,48| 2.56 8. 90 0
2 —. 083]—15. 81| 2, 96{ 12, 88 13 —1. 8 . 0232 —9.50| 2 68 8. 85 .03 L3 . 0042 —0. 501 2 88 6. 86 .04 10,0
A —. 304|—16. 03] 3. 26| 12. 80 .03 .1 . 0054 —9. 72| 2, 06 6. 80 .04 7 . 0056 —9. 72| 2. 94 6. 81 .03 A 7. 15
4 —. 1500 —8, 00 1. 63| 6. 40 .03 —.2 0054 —4. 85 1,48 3. 40 .03 6 . 0042| —4, 85| 1,47 3 41 .03 7
b 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 (Eya® zqs..w):, MYy
3 ( y.,w+2‘,¢.;m 7.11 ETq w'; wy=244 radians per second

IVILAVRKOYAY H0J HALLIWWOD XHOSIAQY "TVNOLLYN—EL0T IHOdHY




TABLE 4—AERODYNAMIC-INERTTA FORCE COEFFICIENTY FOR VARIOUS VALUES OF ¥ FOR EXAMPLE WING

[Common factors for each column are given under the column headings}

Flexure
k Pg, Pre Py, Pry Py, By,
M B B M “ #

0.036 27. 0 — 1444 51.9 —108, 3 92. b — 75, 6
.12 30, 6 —112, 5 13, 44 —8, 27 92, b —75. 6
. 1443 31.0 —756, 2 10, 82 —4, 14 92, 5 —75h, 8
. 1690 31. 2 —60. 7 0, 61 —2. 53 92, 5 —75. 6
.24 32.0 —23. 8 5. 82 1. 35 02, 5 —76. 6
. 50 33,0 —3 76 2. 89 2, 29 92, b —76.6

o 33. 6 1. 397 0 (] 02, b —75, 6

Torsion
k Qny Qre Q1 Qre On Une
b Py o by o Lok Mby Mobly
In B B M B »

0. 036 3 67 5490 —19, 40 68 3 ~75, 6 114, 7
.12 2, 52 51, 4 —5. 03 11, 42 —175. 6 114, 7
. 1143 2, 36 37. 6 ~—4, 06 8. 48 —~7b. 6 114, 7
. 1590 2. 28 32, 0 -3, 60 7, 24 ~7h, 6 114, 7
.24 1, 98 18, 24 L -2 18 3 a7 —~ 75, 6 114, 7
. Ho 1, 623 10, 74 —, 8956 1. 143 ~75. 114, 7

L] 1, 307 . 14090 0 0 —~75, 6 114, 7

SHRETE0Yd HALLNTI 40 NOILATOS AVDIHENAN ¥03 HENAHIOUd XNOILVINHOASNYEL HALLVHELI NV
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TABLE 5.—~ITERATION TO OBTAIN FIRST MODE FOR
[Common factors for each column are
/
7 [ ° | | N -
%
5 4 3 2 1
Station
Flexure: (a} First cycle ~
1 2 3 4 5 L 7 8 9 10
Station he® yu't Payyr Pretr Pryyr Predr Pr Pr Pe Pryyr
br . ] by s by
* o ) _ ® *
1 L. 000 0 3L0 0 0 0 3L0 12, 34 12, 34
2 . 444 18.77 0 0 0 18. 77 14. 35 14. 85
' 3. 16 3. 16
3 . 111 0 3 44 0 0 0 3. 44 { 8. 18 { - 18 10, 27
4 . 028 0 . 868 0 0 b . 868 L01 . 55
5 0 0 0 0 D 0
Torslon: (&) First eycle
1 2 3 4 5 6 7 8
Station d12W du® Qrsyr Tretr QIu?I Quqﬁz ae . qr
by w? Abty o?
I [
1 0 0 2.36 .0 0 0 2. 36 0. 939
2 0 0 1. 048 0 0 0 1. 048 1. 002
3 0 0 . 262 0 0 0 202 { - 299
4 0 0 . 0660 0 0 0 . 0660 _ . 077
5 0 0 0 0 0 0 0
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£=0.1443 FOR WING WITH CONCENTRATED MASS
given under the column headings]

333

4 ,
S _e® '
7
7
5 4 3 2 1
Station
tat First cvele—Continued
1 | 12 13 14 15 16 17 18 19 20 21
. Predr l P | Te AlMp E Az P = r B Ay e®
| by by Mby 1| Adgby 1 Mby 1 Aby 1
g P X Elu C Elp C Elx C Eli T
,. 12.34 | 0 0 218. 6
; 1231 12 34 95.3 95.3
‘ 1435 ! 12 34 12.34 13.5 13. 5 123.3
: i 26.69 26. 69 8L 8 818
. 145 145
0 14, 10 39. 03 30. 03 { 3 { 15 L5
_ 40. 79 2238 54 6 30.0
: .55 61. 41 8L 41 6L 5 33.7 1L 5
. 41. 34 22. 62 20. 9 JIL 3
g 84 03 81 03 382 20.9 0
ta) First eyvele—Continued
f-- H |
Y [ 0| U 12 13 14 15 16 17
! i 1
| R I Urilix ‘ Qrede ar Tx ¢ Ad $12® 612®
: My . AbPy 1 Adbty 1 oty 1
| " GJu C GJz C Elx C
{
0. Y39 I 0. 939 —377 | —0.510
0.94 0.91 0. 94
1. 082 L 002 —471 —. 638
2 03 2 03 2 03
{ 2390 | —8.50 0 -8 21 —6.74 —. 912
—8.18 —6.18 —3.38
. 042 . 042 —3.36 —. 455 »
—6.14 —6.14 —3.36 o R
|
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TABLE 5—ITERATION TO OBTAIN FIRST MODE FOR
Flexure: (a) First cyele—Continued

22 23 24 25 26 2 28 20 | a0 31
B . . B " . —~
Station Pryys Progr —Pryr —Pr¢r P P Pr Pr.y: Pry¢s P

by . Aby Moby

B . B M
1 0 0 —10. 82 0 —10.82. | —Z31 | —431 —4.31
2 0 0 —4.80 0 —4.80 | —5.00 —5.00 —5.00

- —1009 |f —1.099

3 0 0 ~1.201 0 —1.201 { gt { (100 0 0 ~1.333
4 0 0 —. 303 0 —.303 | =852 —:-103 | —.103
5 0 0 0 0 0 "' '

Torsion: (a} First cyele—Continued

18 19 20 | 21 22 23 24 25
Station Qrsiz Qredr —Qyr | —CQuér qr o ‘Ez Qryyr

by wt Ay ot Mbly s
# ) ' H B

1 0 0 405 0 4. 05 1. 612 1. 812

2 0 0 1. 798 0 1. 798 1. 874 1. 874

3 0 0 450 | 0 .50 [ -2 o 0

4 0 0 L1143 | 0 . 1143 .133 . 073

5 0 0. i 0 0
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k=0.1443 FOR WING WITH CONCENTRATED MASS—Continued
(a) First eyele—Coneluded

: ' |
i 32 33 . 34 35 36 aT | 38 { 39 ! 0 41
| : !
I - I - D f17,,
! 13} AlM; i Ay o o ! @ B8 Ay ) yum %—Di:—:ﬁ?r,
| 3
by | Ay by 1| Addby L Aby 1 Mby 1 Ay L
B m Elp C Efpy C i Elu C i Elu C Elpg C
| 0 0 —70. 38 218.6—70.351
—4.31 —4.31 —3L12 | —3L12
‘ —4.31 —4.31 —4.73 —4.73 o6 3 o6, 3 —89.26 | oo
—26.39 | —26.39
—9.31 —9.31 . -

—5.03 —5.05 - .
| ~13.62 | —13.62 { 3% { 3% —12.87 374—116.0i
| —10. 64 —5.84 —17.08 —-9.35
i —19.46 | —10. 46 —19. 46 —10. 67 —352 b .
© —10.83 —5.95 —6.41 —3.52
| | —25.41 | —25.41 |, —1L70 —8. 41 f 0

12) First cycle—Concluded
| 26 ! 27 ‘ 28 l 29 30 ’ 31 1 32 33 |
— ; - (I
‘ Qredi | ar } T: | 8 Ag $u® | ou® :ﬁ;ﬁ
My L by 1 APty 1 | Ay 1
I GJp C Gy C i Elp C |
' 1 612 9. 51 L288 | oo
L 612 1. 612 L 61
1. 874 7. 90 LOT0 | oo
3. 486 3. 486 3.49
0 . 500 : 4 41 D597 | .
3. 986 3. 986 218
. 073 2. 23 0802 | ol
4 059 £ 059 2 23 |
! r 0 ! 0 |
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Flexure: (b) Second cycle

TABLE 5—ITERATION TO OBTAIN FIRST MODE FOR

(¢) Third cyele

2 | B e™ + i)

T (1a ST 1 ®)

= (269.5—82.2¢) -z o=

Elp

1 2 i 4 5 | 1 2 3 ¢
: @ 15 mz’i"’ :
Station 1z nr® I_Iznm y;zm g::ﬂ’% V1™ y'® Tt 0
Adtby 1 My 1 Mty 1
EIs C El.C EI. C
1 1. 000 0 . 253. 0 —83. 22 263.0—83.227.. 1. 000 0 267. 5 —82. 89
2 . 583 . 0015 149. 7 —46.67 | oo . 569 . 0020 152. 3 — 486, 47
3 . 189 . 0021 bl 2 —15. 42 270—84.9¢ . 104 . 0028 52.1 —15. 33
4 . 052 . 0007 A4 4 —4.22 | liaaas - . 054 . 0012 14,6 —4.20
5 0 0 0 0 . 0 0 0 0
Torsion: (b} Second cycle {e) Third eycle o _
1 .2 3 e 5 1 2 3 ¢
: B 1§y O
Station $ia® Su® e #u %ﬁ%ﬁ' $1® Su® a0 $u®
My 1 - My 1
EI. C L Eixn C
1 —0. 00382 0. 00466 —1. 407 1. 601 3634 12.17 . —0. 00660 0. 00399 —1. 570 1. 594
2 —. 00407 . 00358 — L 537 1.353 | el —. 00680 . 00300 — 1 690 1 350
3 —. 00457 . 00126 —1. 829 L7738 414—55.17 —. 00716 . 00068 —1. 063 . 764
4 —. 00228 . 00064 —. 912 .3892 | ... - —. 00358 . 00036 —. 082 . 387
5 0 0 g | o . 0o 0 0
. : s 3.7 - .
I Zna® +iypu®) | Zldr® +igu®) My 1. (423000 o

-m==39.7 radians per second;
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k=0.1443 FOR WING WITH CONCENTRATED MASS—Concluded

te) Third evele—Coneluded (d) Fourth eycle
5 1 2 3 4 5 6
12+ W w %) & ® yie® + iy ® Z (1a® +iyu™)
y1e® + i ® ! e i iz yu e 4ty @ (e 4 )
My 1 T 5 Mty 1 Mty 1
Efp C Efug C EluC
267.5—82.80¢ i 1. 000 0 268. 6 —82 56 268.6— 82.56/
____________ } . 569 . 0030 153. 0 —46. 29 [,
268 —83.2: ) . 194 . 0027 52. 4 — 1528 270—82.5¢ 269~ 82.8¢
____________ | . 054 . 0011 1L 7 —4. 18 e mmmmmmmm
| 0 0 0 0
te) Third evele—Conecluded (d) Fourth eycle
5 1 2 3 4 5 6
12 +ig W o @ ® ® 12®+igu® (2 - 16u™)
$12® + I ® iz du e du 6P +ipu® T (612 + iy ™)
haly 1 Myl
Elu C Elg C
282—-T1.5¢ —0. 060704 0. 00379 —L 591 L. 589 270—80.8{
............ —. 00720 . 00281 — L 711 L 340 e mm——————
282—79.8¢ —. 00751 . 00052 —L 977 . 758 260 —82.4i 270—81.5¢
[ —. 00376 . 00028 —.9 .88+ | 0 .
0 0 0 0
%22 10397
fa=7Ja5¢ =—0.305; =3 0—.1443—91.6 feet per second
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TABLE 6.—ITERATION TO OBTAIN TRANSFORMED SECOND

[Common factors for each column are

4, __
7l
5 4 3
Station
Flexure: (a) First eycle
1 2 3 4 5 7 8 9
. . Yar2® + Y ors®
Station Yarp'l Yarr® vt yu® Yart® Yorr® Yoar® ;;:::Tﬁm
Noiby Mby 1
Ely EIu C
1 (A) 0 0 —818. 4 4]. 38 818. 4 0 0
2 0 0 —468. 8 23. 48 464. 5 —4. 3 1.7 e ———————
3 0 0 —161. 4 7. 90 158. 8 —2.6 2.2 |l
4 0 0 —45. 4 2.19 - 44. 5 —. 9 IR 1 S
5 0 0 0 ) 0 _0 0
Torsion: (a) First cyele
1 2 3 4 5 7 8 9
. - $a22® + 1 oa /P
Station Saarl Garrt? s ot Hort? qb.m‘_” Gars™® Bz ® Figar®
1 1. 000 0 28, 76 —4.45 —5.62 23. 14 —1.10 23.14—1.10
2 . 875 1] 8. 25 —3. 89 —5.79 20. 16 —133 |eam e
3 . 529 0 19, 42 —2 35 —6.12 13. 30 —1, 82 25.2 —3.06:
4 . 274 0 9.92 —1, 222 —3.06. 6. 86 — 84 |
5 0 0 )] 0 0 0
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MODE FOR k=0.1443 FOR WING WITH CONCENTRATED MASS

given under the column headings]

4 ' . ; L
7
3 4 3 2 1
Station
(b Second ecycle
3 | - ' |
o ! 2 __ 3 1 5 6 7 8 9
( i @ f iy, @
) e | @ ® 2 ) %) @ Yer 1o
YR ! Yasi ;I Ysr Yar Yur Yuir Yarr Year Yer2® T iyaar
; , | A'by 1 Lyl
' EIu C : Efu C
. i
0 | o | _sss5 | 10163 888.5 | —10.65 | 0 0
—.188 . .064 . —510.8 | 6LEO 505 | —57.1 | —6.3 15 37—11.2i
, —. 117 ; . 090 —177.0 " 22, 28 172. 5 —17.7 —4. 5 1 6 43—6.1¢
i —. 041 i . 036 —50.0 6 15 48 . 4 —4 64 | —1L L 81 R .
0 Lo 0 [ 0 0 0 i 0 0
{h) Second eyele
1 l 2 | 3 | 1 I 5 | 6 7 ‘ 8 ! 9
t |
| i ! ‘ ! { I Pa2e™® T ipeas®
dap'® Poas'® : dagt® : S : ur® ; By orn'® | Fa2f™® | 6en® + ipear®
: i
i oy 1
; I EIx C
| i i i .
’ 1. 000 0 N 30. 80 l —6.92 I —5. 88 ‘ 105 24 92 —2 87 i 21.92—2.87)
. 886 —. 0153 ! 28. 36 —6. 33 —8.12 a21 22.24 —3.12 e e —————
g Lo —eds | 2Lk —1 59 —e6l | L2 14 99 —335 263 SEae
. . 298 —. 0221 11.01 —2.36 —3.30 | .63 7.71 —1.73 e e
© 0 0 ! 0 | 0 0 I 0 0 0 |
i
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TABLE 6—ITERATION TO OBTAIN TRANSFORMED SECOND MODE

Flexure: (¢) Third eycle

1 2 3 4 5 "6 7 8 9
- . B s .
. : e (0 L 5174700
Station Yare® Yor P ys® Yer® Yue® _ _Ilmm Ya2r™® Yarr® g:: 5 i:z:ﬁ 5
) Ay 1 Myl
Blu C EIlL.C
1 (A) 0 0 —03L9 | 156.25 93L.9 | 156.25( 0 o ]
2 —. 271 . 149 —537. 2 92,18 | 530.5 —86.3 —6.7 5.9 28— 6.3¢ 3
3 —.109 161 | —187.2 32 08 181, 2 —27.7 —6.0 5 3 31—1.4 }
1 —.071 - 065 —53.0 9. 60 50. 8 741 —22 2. 19 32—1.4f ;
5 0 0 ) 0 0 .0 0 0 J ,
Torsion: (¢) Third eyele B
1 2 3 4 5 6 7 8 g L
| i - . T—ﬁ% _ . .
- B (¢4} éaﬂ!“’ + i¢aﬂ(° b
Station Gar® ¢ot® . __ti:_wm ur'® 118 ____fbﬂ ba2r® @2 @ Sz ® T igoy®
ety 1 o
B Efy. C E
1 . 1. 000 0 32, 38 _8. 42 ~6.00 | “400 | 2638 | —3.82 26.38— 3.82/
2 T 904 —. 0221 29. 00 —7.81 —6. 29 3. 71 23. 61 —4.10 26.3— 3.00i
3 - 609 —.0644 | 2310 —5.99 —6.03 1 64 16, 17 —4 35 27.0— 4.20i
4 314 —.0333 | 1180 —3.08 —3.46 | ...8d 8. 34 —2 24 27.0— 4.28;
5 0 0 i) 0 0 0 0 0

1 X (Yarr®® + iya0r®) | X (90228 +16a3r®)
2 LZ (Yar™® +102r®) * L (Sarn™® + ida2:0)

]=(28.9—3.78{) %"—}: &



FOR k=0.1413 FOR WING WITH CONCENTRATED MASS—Concluded

¢d) Fourth eycle

AN ITERATIVE TRANSFORMATION PROCEDURE FOR NUMERICAL SOLUTION OF FLUTTER PROBLEMS

341

| 1 ' 2 3 4 5 8 7 8 9 10
8 - fy7 0y (P T (Yarn® + iy ear'™)
ol @ “w (0 0 w ™ ey Vaz Ya2t Yark Yar
Yare Yot Yor Ye: Yore Yaur Yarr Yaar Yz ® iy ® X (§eax® + iyear®)
. b ho'by 1 Aty 1
Elp C EIu C
i 0 ‘o —041. 0 165. 58 941. 0 —165. 58 0 0
1 —.281 . 184 —543. 3 08 06 534 9 —91.8 —8. 41 8.3 31—-2.0¢
i —.252 . 165 —190.0 35. 82 183. 1 —29. 50 —6.9 6. 32 31-5.0: 31—-3.414
—. 094 . 069 —54.0 10. 42 51.3 —T7.93 —-2.7 2. 49 31—3.5¢
0 0 0 0 0" 0 0 ¢
tdy Fourth eycle
-
1 1 2 3 i 8 1 8 ' 7 8 9 10
Ba2e®® 1 i aar® Z ($a2r™ + iga9)
@ w o w 0 o ™
1 pasgW® ! bar sz 133 daz $aur Pa2p bazr .22 Figuar® T (622 T 6.219)
My 1
Elu C
1. 000 0 33. 16 —8 75 —8.03 4. 68 [ 27. 13 —4 07 27.13—4.07i
. 001 —. 0256 30. 70 —8 15 —86. 33 3. 80 | 24 37 —4.35 27.1— 1.05:
. 624 —. 0749 23. 92 —6.30 —8.98 L 73 16. 94 —4 57 27.7— 1.02i 27.3—4.051
. 322 —. 0384 12. 20 —3.24 —3. 49 . 88 l 871 —2.36 27.5— 1067
¢ 0 ¢ 0 0 g | 0 0

wr=121.0 radians per second; g.o= —0.1308; r,=280 feet per second
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TABLE 7.—ITERATION TO OBTAIN TRANSFORMED THIRD

{Common factors for each column are

] | [ I )
v o . . . . _
//'I
5 4 3 2 1
Station

Flexure: (a) First cycle

1 l 2 3 4 5 6 .| 7 | 8 9 10 11 j
. T oo R It : B ® 1o m i
Station Yarr®™ Yasr'l e | g yart® yr® | year® | yrau®™ | yar® | par® %:‘z(—u'i—;g:::w
b Atby 1 Aty 1
Elu ?;* Tu C ‘
1 (A) 0 0 3681 | —73.82 —3681) 7382 | o0 0 0 0.
2 . 850 0 22371 —43. 43 —209. 2 4L 05} —2.7 1. 87 11. 2 —LOl | o
3 1. 000 0 85. 4 —13. 60 —7L 5 13. 26 —2.3 1. 45 1L 6 —. 89 11.6- 0.8%
4 . 350 0 25.4 —4. 45 —20. 1 3. 59 —.9 .57 4.4 — 29 e m—_——
5 0 1] Q... -0, *D ol 00 4 0 L]0 0 0
Torsion: (a) First cyele
o =T I = o o
1 2 3 4 5 6 7 8 9 10 11
o : - “$aar® + igas® -
Station ¢arp'l $ats 0 4’bij ¢um_ _ éu_g..m O _fb-_zlm Ba? | gay™ - bat Dt das®
e oo - ~_F M . -
1 (B) 0o | o0 | —1024] 1687 2. 82 zo2 | o210 o | 0 . e o
2 0 0 —10. 30 1. 592 2.45 —1.551 ;. 7.15 —. 010 —. 70 D081 b el 7
3 0 0 —10. 60 1. 067 2.72 —. 742 | 5.05 —.445 | —2.83 | —. 120 | .._.._._.._ em )
4 [} 0 —5. 28 . 5684 1 36 —.378°7 2.860 —. 231 | —1.32 | —. 045 | o
5 0 0 0 0 0 0 0 0 ] 0 )
. ¥
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MODE FOR k=0.1443 FOR WING WITH CONCENTRATED MASS

given under the column headings]

343

g .
.'i
3 4 3 2 i
Station
(b} Second eyele
| | i | ! |
1 : 2 i 3 l 4 : 3 6 | 7 8 9 10 11
T 1 ! . _
@ i o o ! (¢] | @ (0 I @ l oD m ® M .
Yoz | Yeu i Yor | yor ! Yur ‘ Your | Yrar | Yoarr Yaz Yaar Yaz® + iy ®
. : Athy L My 1
i Efp. C Efp. C
|
0 .0 800 | —sa40 | —s10 | sza | o 0 0 0
.067 ¢ —. 013 296. 2 —48. 57 —274. 8 46. 14 : —4 5 2 08 16. 9 —.35 17.6—0.13i
1. 000 0 113. ¢ —16. 82 : —93.9 14.80 | —3.8 2 23 15. 3 .21 15.3+0.21¢
. 379 | . 004 34 4 —4.73 ; —26. 3 3. 97 | —1.4 . 8% 6.6 .12 A
0 | o 0 0 i 0 o 0 0 0 0
! _ i .
thy Second eycle
- T ' : 1
L2 3 L4 i3 l 6 T 8 9 ! 10 11
| BT |
| ! Pesa® + igou®
@ ar®? @ | @ @ . @ e e ® o Pa32 T 1@l
Sask I Gasr 1 [:17) |l 7Y | dur i dous PbasR [-TPL14 dasr ‘ basr $012® + i ®
M L
. Efp C
|
[ 0 0 —15.99 L 640 312 —2, 392 12, 87 0. 752 0 0
i —.060 —. 0019 —168. 02 1. 521 3. 26 —1. 938 1L 61 . 358 —L 15 —. 059 | o
I —. 241 —. 0289 —16. 00 . 858 i 3. 59 P 872 8. 23 —. 460 —4 18 —. 474 | 17. 4—0.1167
! —.118 —. 0125 —8 07 . 472 I 1 80 —. 445 4 23 —. 242 —2 04 I —. 215 18 0—0.0937
o0 0 0 0 |0 l 0 0 0 A |
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TABLE 7.—ITERATION TO OBTAIN TRANSFORMED THIRD JMODE
Flexure: (¢) Third cycle

1 2 EE 5 6 7 8 9 10 1
[C) JREF /YR ()
Station Yarz® Yar® y5z® yu® L{pmm var® | Ysa1e® | yoau® | yar® | yeu® %:—:mj::-%
. by 1 a1
Eln C Elx G
1 (A) 0 0 515.9 | —102. 86| —515. 9| 102 86 0 0 0 0
2 1. 105 —. 038 311. 8 —59.83 | —283.8 57.3 | —4.6 2.21 13. 4 —. 29 12.2+0.16¢
3 1. 00 0 118. 5 —20.69 | —100.5 18.51 | —3.9 2. 37 14.1 .19 14.14+0.19¢
4 . 431 . 002 35. 2 —5. 93 —28. 2 5. 00 —L5 .93 5.5 0 12.7—0.06¢
5 0 0 -0 )] 0 D 0 0 0 0
Torsion: (¢) Third eycle
1 2 3 | 2 5 6 7 8 9 10° i
. @ o a Patr® -+ fdayrtt
Station bar® $oar® dor® bur® ¢b_uz__°_" | ew® boo2z® | @paer® | daar®@ | dour® P L idn®
i Aty 1
- Bl c
1 (B) 0 1] —16.78 1. 942 3. 26 —2.658 | '13.47 | 0.718 0 0
2 —. 075 |—.0028 —16.78 1. 808 3 44 -2 174 12.17. .300 | —1.17 | —. 086 15.64-0.30¢
3 —: 278 |—.0272 —16. 72 1. 053 3. 82 —1.037 ] 8863| —. 53| —4.27 | —. 517 15.740.334
4 —. 134 |—.0122 —8 45 . 577 1. 91 —. 520 [ 4.43| —.279 | —2.11 | —. 231 15.840.29¢
5 0 1] 0 0 ' 0 ] -0 0 0 0

1 TE War® +iyaur®) | X (das™ + f¢an“)):|___l 7\0 Aly 1
5 | E Yz ® T et ®) T T (Garn® F g ®) | ([4:82+0.445) Tl &
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FOR k=0.1443 FOR WING WITH CONCENTRATED MASS—Concluded

(d) Fourth eycle

l . g g
b | 2 3 4 5 6 7 8 |9 10 11 12
i ! ' _ "
| w ! w m @ 0] w ® @ ® ® Yorz® + iyas® T (Yarr® + iy ®)
! Yasp ; Yaur Yox Ya Yur You Yoarr . Yoarr _ Yar Vaur Vaz® T iyear® T Wz ® T iyar®)
‘ b by 1 My 1
Elp C EInC
E 0 0 494, 8 |—86.24 |—404. 8 [ 86. 24 0 0 0 0
- 952 | —.033 | 300.3 |—50.13 |—28BL. 6 | -47.75 | —b5. 1 2,35 13.6 [ —.03 14 3+ 0.467
1. 000 0 115.2 |—17.33 | —96.2 | 15.31 | —4.3 2 53 14.7 . 51 14. 74 0.511 1+ 534 0.547¢
| “390 | —. 005 844 —4.87 | —26.9 412 —-1.7 L 00 5.8 .25 14. 8+0.83i .
; 0 0 0 0 0 60 ;.0 0 0 0 _
| I ! L.
(d) Fourth eycle
1 I 2 3 4 & 6 7 8 g 16 11 12
i Fa12® i@ L (™ +idan™)
(Ul w W @ (0] @ ® w ® ® Paz T Pel !
Par ._ Bazs Gz dur Pur ' Foir Praze $rau Pasn Darr Pasz® t 1Gear® (6az® 1+ g ®)
I . .
Aoty 1 o
EIunC
I o 0 —17.63 1 1.629 | 3.18 (—2460| 1450 | 0.831| O | @
—.083 |—. 0036 |—17.70 | 1.511 3.33 |—-1.992| 13.09 .385 | —1.28 1 —.096 15.4+0.49: -
—. 304 |—.0326 [—17.53 } .B43 367 | —. 901 | 9.28 § —. 530 —4.58 | —.588 " 15.14+0.32¢ 15.1240.343i
—. 150 {—. 0144 | —8. 86 .470 L84 | —. 459 | 477 | —. 278 | —2.25 | —. 267 15.14+0.33¢
0 0 0 0 0 0 0 0 0 0

wy = 168.9 radians per second; g,=0.030; iy=2390 feet per second

272482549238



TABLE 8.—COMFUTATION OF TRUE SECOND MODE FOR k=0.1443 FOR WING WITH CONCENTRATED MASS

[Flexural functions arc in terms of b; torsional functions are in radians; %—1 =F3=8.65— 1.600i]
7 ) L
/)
/
5 4 3 2 1
Station
Flexure
1 -2 3 4
Station O i . '
ybll??:(y_i': b,-";”)_ e+ i Yaan® -+ 1Y aar® Yar+iyar
i@ 941.0— 165.58i [108.8-0.06¢ 0 108.840,961
2 [ R, © 8L740.851 . —8416.8; 53.3+7.15¢ .
L 2 J N 21.06-4-0.49¢ - —6.9+4-6.32¢ 14.24-6.817
L N 5.9040.187 v =—2.74-2.404 3.24-2.67i°
L R N 0 i 0 o . .-
| ; . :
. Doy p
. Pl " Torslon :
1 ! . 1 2
. 1 2 3 4
Station | O dn ‘
B B AL ety $irt i $aan® | ipeu® ¢rn+idar
I 1:{B) § }itmmmmmmemmant o —~D,7724-0,4015 ; | - 27.18_—-4."07:'-_ - 26.36—8,67% '
A , ______________ " —0,7864-0.2045 ' i 24.37—4.85{ 23.58—4.06f¢ -
I B R - —0.8161-0.048 [ 16.94—4.57¢ 16.12—4.62¢ ' f
4 i R, - —0.40940.026¢ 8.71—2.36{ 8.30—-2,33 |
- b S 0 0 0 }
- i ; : '
L
i :
f e '
I :
oo 1
! gt 3
[ ) .
i !
i iyl *
. g1 - ' ;
(- :
b
IR IR o
g i e
', ” B - 1

9v€

€401 LHOJHAYH

BOILAVNOHEY Y04 HAHILIWNOD XUOSIAQY TVNOLLVN




TABLE 9.—(*OMPUTATION OF TRUE THIRD MODE FOR k==0,1443 FOR WING WITH CONCENT

RATED

MASS

[Flexural functions are in terms of b; torsional functions are in radians; g—;-—-] == 16.97— 6.091';%;’—-1::F,=0‘9-10-0.3!3i]

/S NP B [
7
b 4 3 2 1
Htation
Flexure .
1 2 3 4 5 6 7 8 0 10 "
Blation Oty = Yheap® = ) _ _ .
w(ynptiyun4-| iyt + Fa(yagt+iyad| Falyys+synn) Yur-ihe vurt+ivin i+ Yarn+ Yt Yasr® 42y ® thrtfn
Fa(ynr+iym) | Fa(asr+iYar) - : ’ .
1(A) —4D4,84-86,24% |- 68,34 12.80: | —hb1,1-73.944 50.1+429,7¢ —30.2— 8,5 | 19,9+ 28.2¢ . 0 - 0 19,94-23.2¢
2 R [PUREPEPIPIN U DS [P NSRRI NSRRI 11,26 13.23{ — 5,664 0,644 13.6—0.08i 10.34 13,844
B | ecacmcmmmmame e emie e e e e e 8.804-4.56¢ — 4,87+ 1,067 1474 0,511 13.646.12¢
2 RO (SO E NP EEUUEPUN) IS PRI RN ISP B F 1,084 1,281 —1.0140.42% 5.8+ 0,254 5,0-+1.95% _
5 [ R PIOI PR U UUIPUU PRI N IS MR 0 0 0 0
- ]
Torsion
1 2’ 3 4 b S 6 7 g 0 10
Btation émt“’ e =]  drar?+ ' . _ . '
Fuleup+ieun) +|  tewenr® = |Fuldnz+idnr)| Fuléuntiénn) éurtidiy éurtions ¢1ntidir butrFidarr . | daan®® +idar® drnt+ iy
u(dart+ o) | Fuldar+idar) ; : : ' - :
I(B) | Jaemecmccmccmane 14,5040,831¢ | oo B P [V AP PR —0.227—0.0894 | 13,88+ 5,48¢ 0 13,35+ 5,344
2 ~—0,208~0,118¢ | 12,37+ 4,55 —1,28—-0,0061 10.88-+4.344
3 ~0,162—0,164% 1,.03--2,46: —4,68—0,588¢ 4,290+41,714
‘é —0,081 -6' 0.0817 4.64"3 1.25¢ | —2.256-0.267f 2.31-6—0.901',

(..
i : -' k
'Lrl B T

SAWIE0Wd WHLLNTA A0 NOLLATOS TVOIHENAN ¥0d HUAdHI0Ud NOIlV’]’E‘HOJSXVH.L HAILVEELI NV

L3¢



